Analysis of heavy baryon lifetimes

Hai-Yang Cheng Academia Sinica Taipei, Taiwan

In collaboration with Chia-Wei Liu (TDLI)

11th International Workshop on Charm Physics

Siegen, July 17, 2023

	ps
Λ_{b}^{0}	1.471±0.009
Ξ _b ⁰	1.480±0.030
Ξ _b	1.572±0.040
Ω_{b}^{-}	1.64 ^{+0.18} -0.17

PDG current values of bottom baryon lifetimes become stable since 2018

 $\tau(\Xi_b^-) > \tau(\Xi_b^0) \simeq \tau(\Lambda_b^0)$

Uncertainty in $\tau(\Omega_b^-)$ is too large to draw a conclusion

		(
PDG ('04 ~ '18)	442 ± 26	200 ± 6		69 ± 12
LHCb ('18)				268 ± 26
LHCb ('19)	457 ± 6	203.5 ± 2.2	154.5 ± 2.6	
PDG ('20)	456 ± 5	202.4 ± 3.1	153 ± 6	268 ± 26
LHCb ('21)			148.0 ± 3.2	276.5 ± 14.1
PDG ('22,'23)	453 ± 5	201.5 ± 2.7	151.9 ± 2.4	268 ± 26
Belle II ('22)		203.20 ± 1.18		243 ± 49
World Ave ('23)	453 ± 5	202.9 ± 1.1	150.5 ± 1.9	272.6 ± 12.0

(in units of fs)

LHCb ('21) & Belle ('22) data were not taken into account by PDG ('23)

• $\tau(\Omega_c^0)$ obtained by LHCb ('18) from semileptonic Ω_b^- decays is nearly four times larger. It has been confirmed by LHCb ('21) using promptly produced Ω_c^0 baryons

 $\tau(\Xi_c^+) > \tau(\Lambda_c^+) > \tau(\Xi_c^0) > \tau(\Omega_c^0)$ $\tau(\Xi_c^+) > \tau(\Omega_c^0) > \tau(\Lambda_c^+) > \tau(\Xi_c^0)$

\tau(\Xi_c^0) becomes 3.3\sigma larger due to new measurements from LHCb ('19, '21) ³

Lifetimes of heavy baryons

Heavy quark expansion:

$$\Gamma(\mathcal{B}_{Q}) = \frac{1}{2M_{\mathcal{B}_{Q}}} \operatorname{Im} \langle \mathcal{B}_{Q} | \mathcal{T} | \mathcal{B}_{Q} \rangle = \frac{G_{F}^{2} m_{Q}^{5}}{192\pi^{3}} \left(A_{0} + \frac{A_{2}}{m_{Q}^{2}} + \frac{A_{3}}{m_{Q}^{3}} + \frac{A_{4}}{m_{Q}^{4}} + \cdots \right)$$
$$\mathcal{T} = \frac{G_{F}^{2} m_{Q}^{5}}{192\pi^{3}} \left[\left(\mathcal{O}_{3} + \frac{1}{m_{Q}^{2}} \mathcal{O}_{5} + \frac{1}{m_{Q}^{3}} \mathcal{O}_{6} \cdots \right)_{2} + \left(\frac{1}{m_{Q}^{3}} \tilde{\mathcal{O}}_{6} + \frac{1}{m_{Q}^{4}} \tilde{\mathcal{O}}_{7} \cdots \right)_{4} \cdots \right]$$
$$\Rightarrow \quad \Gamma(\mathcal{B}_{Q}) = \frac{G_{F}^{2} m_{Q}^{5}}{192\pi^{3}} \left[\mathcal{C}_{3} \left(1 - \frac{\mu_{\pi}^{2} - \mu_{G}^{2}}{2m_{Q}^{2}} \right) + 2\mathcal{C}_{5} \frac{\mu_{G}^{2}}{m_{Q}^{2}} + \mathcal{C}_{\rho} \frac{\rho_{D}^{3}}{m_{Q}^{3}} \right] + \Gamma_{6} + \Gamma_{7}$$

- A₀ term from the decay of heavy quark Q
 ⇒ Lifetimes of all heavy hadrons H_Q are the same in m_Q → ∞ limit
 No linear 1/m_Q correction from A₁ term , known as Luke's theorem
- A₂ term arises from kinetic & chromomagnetic operators
- A₃ term consists of dim-6 2-quark Darwin operator & 4-quark operators which will induce the spectator effects responsible for lifetime differences
- A₄ term includes dim-7 4-quark operators which will induce 1/m_c corrections to spectator effects

Spectator effects described by dim-6 four-quark operators:

Although spectator effects are 1/m_Q³ suppressed, they are numerically important due to a p.s. enhancement factor of 16π² relative to heavy quark decay Subleading $1/m_Q$ corrections to spectator effects are obtained by expanding forward scattering amplitude in light quark momentum and matching the result onto operators containing derivative insertions

Gabbiani, Onishchenko, Petrov ('03,'04)

⇒ dim-7 four-quark operators:

 $P_1^q = m_q \bar{Q}(1-\gamma_5) q \bar{q}(1-\gamma_5) Q, \qquad P_2^q = m_q \bar{Q}(1+\gamma_5) q \bar{q}(1+\gamma_5) Q,$ $P_3^q = \frac{1}{m_Q} \bar{Q} \stackrel{\leftarrow}{D}_{\rho} \gamma_{\mu}(1-\gamma_5) D^{\rho} q \bar{q} \gamma^{\mu}(1-\gamma_5) Q, \qquad P_4^q = \frac{1}{m_Q} \bar{Q} \stackrel{\leftarrow}{D}_{\rho} (1-\gamma_5) D^{\rho} q \bar{q}(1+\gamma_5) Q,$

and \widetilde{P}_{i}^{q} obtained from P_{i}^{q} by interchanging colors of Q and \overline{q}

 \Rightarrow dim-7 4-quark operator is either dim-6 4-quark operator times m_q or 4-quark operator with two derivatives suppressed by $1/m_0$

Beneke, Buchalla, Dunietz ('96): width difference in $B_s - \underline{B}_s$ system Gabbiani, Onishchenko, Petrov ('03,'04): lifetime difference of heavy hadrons Lenz, Rauh ('13): D meson lifetimes Effects of dim-7 4-quark operators on charmed baryon lifetimes were explored in 2017-2018. Preliminary results with the conjecture that Ω_c^0 is no longer shortest-lived and that $\tau(\Omega_c^0) > \tau(\Lambda_c^+)$ were first reported at 2018 HIEPA Workshop (March 19-21, 2018, Beijing).

[$\Gamma^{ m dec}$	Γ^{ann}	$\Gamma_{-}^{\mathrm{int}}$	$\Gamma_+^{\rm int}$	Γ_{SL}	Γ^{tot}	$\tau(10^{-13}s)$	$ au_{ m expt}(10^{-13}s)$
	Λ_c^+	1.012	1.883	-0.209	0.021	0.308	3.015	2.18	2.00 ± 0.06
ļ	Ξ_c^+	1.012	0.115	-0.189	0.353	0.524	1.854	3.55	4.42 ± 0.26
	Ξ_c^0	1.012	2.160		0.351	0.524	4.083	1.61	$1.12\substack{+0.13\\-0.10}$
	Ω_c^0	1.155	0.126		0.346	0.520	2.855	2.31	0.69 ± 0.12

 $\Gamma(\Xi_c^+)$ is suppressed, while $\Gamma(\Lambda_c^+)$ is enhanced, so that $\tau(\Xi_c^+)/\tau(\Lambda_c^+)$ becomes 1.63 . However, $\Gamma_+^{int}(\Omega_c^0)$ becomes negative and $\Gamma^{SL}(\Omega_c^0)$ too small. Introduce a parameter α to $\Gamma_{dim-7}^{int}(\Omega_c^0) \& \Gamma_{dim-7}^{SL}(\Omega_c^0)$. In general, Ω_c^0 is no longer shortest-lived. For example, $\alpha = 0.75$ leads to $\tau(\Omega_c^0) = 2.3 \times 10^{-13}$ s and hence $\tau(\Omega_c^0) > \tau(\Lambda_c^+)$.

An ad hoc parameter α was introduced to ensure the validity of HQE for Ω_c^0

 $T(Ω_c^0) = 231$ fs for α = 0.25

Less than three months later, LHCb's new measurement of $\tau(\Omega_c^{0}) = (268\pm24\pm10\pm2)$ fs was first reported by Mariana Fontana on June 8th of 2018, which is nearly four-times larger than the world average of (69±12) fs obtained from fixed target experiments!

Ω_c^0 lifetime measure	ments	
FOCUS E687 WA89	72 ± 11 ± 11 fs $\Xi^{-}K^{-}\pi^{+}\pi^{+}, \Omega^{-}\pi^{+}$ 86 $^{+27}_{-20}$ ± 28 fs $\Sigma^{+}K^{-}K^{-}\pi^{+}$ 55 $^{+13}_{-11}$ $^{+18}_{-23}$ fs $\Xi^{-}K^{-}\pi^{+}\pi^{+}, \Omega^{-}\pi^{+}\pi^{+}\pi^{-}$	events 64 86 25
PDG Average	LHCb, Ω _b Ω _c ⁰ ~ 1000 e v	$ \rightarrow \Omega_c^0 \mu^- \overline{\nu} X \rightarrow \rho K^- K^- \pi^+ wents $
FOCUS [2003]		
0	200 Ω_c^0 life	400 etime [fs]

In this talk, I'll focus on the baryon matrix elements which constitute the major uncertainties in the predictions of heavy baryon lifetimes

$$\Gamma(\mathcal{B}_Q) = \frac{G_F^2 m_Q^5}{192\pi^3} \left[\mathcal{C}_3 \left(1 - \frac{\mu_\pi^2 - \mu_G^2}{2m_Q^2} \right) + 2\mathcal{C}_5 \frac{\mu_G^2}{m_Q^2} + \mathcal{C}_\rho \frac{\rho_D^3}{m_Q^3} \right] + \Gamma_6 + \Gamma_7$$

Nonperturbative baryonic matrix elements: 2-quark operator m.e. $\mu_{\pi}^2, \mu_G^2, \rho_D^3$; 4-quark operator m.e. $\langle O_{4q} \rangle$

$$\mu_{\pi}^{2} = \langle \overline{Q}_{v}(i\vec{D})^{2}Q_{v}\rangle_{\mathcal{B}_{Q}}$$

$$\mu_{G}^{2} = \frac{g_{s}}{2}\langle \overline{Q}_{v}\sigma_{\mu\nu}G^{\mu\nu}Q_{v}\rangle_{\mathcal{B}_{Q}} \qquad \langle \mathcal{O}\rangle_{\mathcal{B}_{Q}} \equiv \frac{1}{2M_{\mathcal{B}_{Q}}}\langle \mathcal{B}_{Q}|\mathcal{O}|\mathcal{B}_{Q}\rangle$$

$$\rho_{D}^{3} = ig_{s}\langle \overline{Q}_{v}(iD_{\mu})G^{0\mu}Q_{v}\rangle_{\mathcal{B}_{Q}}$$

Matrix elements μ_{π}^2 , μ_G^2 , ρ_D^3 should be independent of heavy quark mass m_Q , so are $\langle O_{4q} \rangle$ in heavy quark limit

 $\langle O_{4q} \rangle$ are conventionally evaluated using NRQM

(in units of $10^{-3} GeV^3$)

Model	(\mathcal{B}_Q,q)	(Λ_b,q_I)	(Ξ_b, q_I)	(Ξ_b, s)	(Ω_b,s)	(Λ_c, q_I)	(Ξ_c, q_I)	(Ξ_c, s)	(Ω_c,s)	
	$L^q_{\mathcal{B}_Q}$	-13(5)	-14(5)	-18(6)	-126(60)	-5.1(15)	-5.4(16)	-7.4(22)	-46(14)	$S_{T_o}^q = -\frac{1}{2}L_{T_o}^q$
NRQM	$S^q_{\mathcal{B}_Q}$	7(2)	7(2)	9(3)	-21(10)	2.5(8)	2.7(8)	3.7(11)	-7.7(23)	$S_{0,q}^{q} = \frac{1}{c} L_{0,q}^{q}$
	$P^q_{\mathcal{B}_Q}$	0	0	0	0	0	0	0	0	<u>(</u> 6()

Gratrex, Melic, Nisandzic ('22) for c-baryons; Gratrex, Lenz, Melic, Nisandzic, Piscopo, Rusov ('23) for b-baryons

- In $m_Q \rightarrow \infty$ limit, L_{Λ_Q} , S_{Λ_Q} , P_{Λ_Q} are independent of m_Q
 - Within NRQM, the magnitudes of 4-quark operator matrix elements in the bottom sector are much larger than that in the charm sector

$$L_{\Lambda_b}^q = -\left|\psi_{bq}^{\Lambda_b}(\mathbf{0})\right|^2 \propto -\left|\psi_{b\overline{q}}^B(\mathbf{0})\right|^2 = -\frac{1}{12}f_B^2 m_B \qquad \left|\psi_{b\overline{q}}^B(\mathbf{0})\right| \gg \left|\psi_{c\overline{q}}^D(\mathbf{0})\right|$$
$$L_{\Lambda_c}^q = -\left|\psi_{cq}^{\Lambda_c}(\mathbf{0})\right|^2 \propto -\left|\psi_{c\overline{q}}^D(\mathbf{0})\right|^2 = -\frac{1}{12}f_D^2 m_D \qquad \Rightarrow \quad \left|L_{\Lambda_b}^q\right| \gg \left|L_{\Lambda_c}^q\right|$$

 $|L_{\Lambda_b}| \approx 2.5 |L_{\Lambda_c}| \sim |L_{\Lambda}| \implies$ far from expectation of heavy quark limit

In MIT bag model

 $\psi = \begin{pmatrix} iu(r)\chi \\ v(r)\sigma \cdot \hat{\mathbf{r}}\chi \end{pmatrix}$ with u(r), v(r) being the large and small components of the quark wave function

 $|L_{\Lambda_h}| = 3.23 \times 10^{-3}$, $|L_{\Lambda_c}| = 2.39 \times 10^{-3} \Rightarrow$ weak dependence on heavy flavor

- In NR limit, $v_Q \to 0$, $v_q \to 0$, $L_{\Lambda_Q} = -\int d^3r \, u_Q^2(r) u_q^2(r) = -\left|\psi_{Qq}^{\Lambda_Q}(0)\right|^2$. It is customary to consider hyperfine splittings in heavy baryons and mesons and then apply the relation $\left|\psi_{Q\bar{q}}^M(0)\right|^2 = \frac{1}{12} f_M^2 m_M$ which is derived and valid under heavy quark limit
- In NRQM, it is important to evaluate 4-quark matrix elements directly in terms of baryon wave functions in momentum space. The momentum integrals are expressed in terms of harmonic oscillator parameters α_{ρ} , α_{λ} for ρ and λ -mode excitation, respectively. \Rightarrow check dependence of 4-quark m.e. on m_0
- Alternatively, we consider the improved bag model

- MIT bag model yields too small baryonic matrix elements compared to NRQM
- **Static bag model has an issue with center-of-mass motion (CMM) of the bag**

Chao-Qiang Geng, Chia-Wei Liu, Ten-Hsueh Tsai ('20); Liu, Geng ('22)

Bag quarks are unentangled; they obey free Dirac equation

$$\langle \mathbf{p}_{\mathcal{B}} \rangle = \langle \mathbf{p}_{q_1} + \mathbf{p}_{q_2} + \mathbf{p}_{q_3} \rangle = 0, \quad \text{(recall that } \langle \mathbf{p}_q \rangle = 0)$$

$$\langle \mathbf{p}_{\mathcal{B}}^2 \rangle = \langle (\mathbf{p}_{q_1} + \mathbf{p}_{q_2} + \mathbf{p}_{q_3})^2 \rangle = \langle \mathbf{p}_{q_1}^2 \rangle + \langle \mathbf{p}_{q_2}^2 \rangle + \langle \mathbf{p}_{q_3}^2 \rangle > 0 \quad \text{because } \langle \mathbf{p}_q^2 \rangle = E_q^2 - M_q^2 > 0$$

The variance of $\sigma_{\mathbf{p}_{\mathcal{B}}}^2 \equiv \langle \mathbf{p}_{\mathcal{B}}^2 \rangle - \langle \mathbf{p}_{\mathcal{B}} \rangle^2$ is referred to CMM of the bag. A physical bag with a definite momentum should not have CMM as $\sigma_{\mathbf{p}_{\mathcal{B}}}^2 = 0$

MIT bag model: Poincare invariance is not kept

$$|\Lambda_c^+,\uparrow\rangle = \int \frac{1}{\sqrt{6}} \epsilon^{\alpha\beta\gamma} d^{\dagger}_{a\alpha}(\vec{x}_1) u^{\dagger}_{b\beta}(\vec{x}_2) c^{\dagger}_{c\gamma}(\vec{x}_3) \Psi^{abc}_{A_{\uparrow}(duc)}(\vec{x}_1,\vec{x}_2,\vec{x}_3) [d^3\vec{x}] |0\rangle$$

In the homogeneous bag model (HBM) of Geng, Liu, Tsai ('20)

$$\Psi^{(\text{HB})}(\vec{x}_1, \vec{x}_2, \vec{x}_3) = \int d^3 \vec{x}_\Delta \Psi^{(\text{SB})}(\vec{x}_1 - \vec{x}_\Delta, \vec{x}_2 - \vec{x}_\Delta, \vec{x}_3 - \vec{x}_\Delta)$$

$$\Psi^{(\text{HB})}(\vec{x}_1 + \vec{d}, \vec{x}_2 + \vec{d}, \vec{x}_3 + \vec{d}) = \Psi^{(\text{HB})}(\vec{x}_1, \vec{x}_2, \vec{x}_3)$$

→ Wave function is invariant under space translation
 → Quarks are no longer constrained in specific regions

/----- x

Quarks are bounded and entangled in the following way:

$$\Psi^{(\text{HB})}(\vec{x}_1, \vec{x}_2, \vec{x}_3) = 0$$
, for $|\vec{x}_i - \vec{x}_j| > 2R$

 $\hat{\mathbf{P}}|\Lambda_c^+\rangle = \hat{\mathbf{P}}^2|\Lambda_c^+\rangle = 0$ CMM is thus taken away from the static bag

Model	(\mathcal{B}_Q,q)	(Λ_b, q_I)	(Ξ_b, q_I)	(Ξ_b, s)	(Ω_b,s)	(Λ_c, q_I)	(Ξ_c, q_I)	(Ξ_c,s)	(Ω_c,s)	
	$L^q_{\mathcal{B}_Q}$	-5.44	-5.15	-5.88	-34.12	-4.83	-4.87	-5.34	-31.63	
BM	$S^q_{\mathcal{B}_Q}$	2.44	2.32	2.74	-5.41	1.96	1.98	2.32	-4.65	in units of
Э	$P^q_{\mathcal{B}_Q}$	-0.27	-0.25	-0.20	-0.62	-0.44	-0.44	-0.34	-1.12	$10^{-3} GeV^3$
	$L^q_{\mathcal{B}_Q}$	-13(5)	-14(5)	-18(6)	-126(60)	-5.1(15)	-5.4(16)	-7.4(22)	-46(14)	evaluated at
NRQM	$S^q_{\mathcal{B}_Q}$	7(2)	7(2)	9(3)	-21(10)	2.5(8)	2.7(8)	3.7(11)	-7.7(23)	μ_H scale
	$P^q_{\mathcal{B}_Q}$	0	0	0	0	0	0	0	0	

- The matrix element P_{B_Q} is nonzero in the BM. Unlike the case in NRQM, L_{B_Q} and $S_{B_Q} - P_{B_Q}$ in the BM vary less than 10% w.r.t. heavy flavor,
- **Both BM & NRQM** are consistent for L_{B_c} but differ largely in L_{B_b}

QCDSR evaluated at $\mu = m_b$: $L_{\Lambda_b} = -(13.1 \pm 2.6)$ Z. X. Zhao et al. ('23)

Evolution to
$$\mu_H$$
: $L_{\Lambda_b} = \begin{cases} -(7.6 \pm 1.5) & \mu_H = 0.8 \text{ GeV} \\ -(9.6 \pm 1.9) & \mu_H = 1.2 \text{ GeV} \end{cases}$

Lifetimes of bottom baryons

1	\mathcal{B}_Q	$\Gamma_3^{ m NL}$	$\Gamma_3^{ m SL}$	$\Gamma_ ho$	$\Gamma_6^{ m NL}$	$\Gamma_6^{ m SL}$	$\Gamma_7^{ m NL}$	$\Gamma_7^{ m SL}$	au	$ au_{ m exp}$
A 0	LO	2.28	1.67	0	0.07	0	0.02	0	1.63 ± 0.15	
Λ_b	NLO	2.78	1.56	-0.02	0.11	0	0.02	0	1.48 ± 0.22	1.471 ± 0.009
= 0	LO	2.28	1.67	0	0.07	0	0.01	0	1.63 ± 0.15	1.480 ± 0.030
$\Xi_{\check{b}}$	NLO	2.78	1.56	-0.02	0.11	0	0.01	0	1.49 ± 0.22	
<u> </u>	LO	2.28	1.67	0	-0.09	0	0	0	1.70 ± 0.27	1 579 0 040
Ξ_b	b NLO 2.7	2.78	1.57	-0.02	-0.07	0	0	0	1.55 ± 0.23	1.372 ± 0.040
Ω_b^-	LO	2.28	1.67	0	-0.17	0	-0.04	0	1.76 ± 0.28	1 6 4+0.18
	NLO	2.77	1.55	-0.03	-0.15	0	-0.04	0	1.60 ± 0.25	$1.04_{-0.17}$

 τ in units of $10^{-12}~\text{s}$

Uncertainties arise from m_b , μ_H , $I^q_{B_b}$, and the deviation of full QCD from HQET

- All predicted lifetimes are improved to NLO. Contributions from dim-7 operators are very small, although NLO corrections to them are still absent
- **Γ**^{*NL*} contributes constructively (destructively) to Γ^{NL} for $\Lambda_b^0 \& \Xi_b^0$ (Ω_b^-)
- **Г**₃ \gg $\Gamma_6 > \Gamma_7$ for b-baryons
- $\blacksquare \ \tau(\Omega_b^-) > \tau(\Xi_b^-) > \tau(\Xi_b^0) \simeq \tau(\Lambda_b^0)$

15

Lifetimes of bottom baryons

BM	NRQM	Expt
1.48 ± 0.22		1.471 ± 0.009
1.49 ± 0.22		1.480 ± 0.030
1.55 ± 0.23		1.572 ± 0.040
1.60 ± 0.25		

NRQM: Gratrex, Lenz, Melic, Nisandzic, Piscopo, Rusov ('23) in kinetic mass scheme to dim-6 level

We use the pole mass $m_b = 4.70 \pm 0.10$ GeV, 2-loop (1-loop) result for upper (lower) bounds

Excellent agreement between theory and experiment for bottom baryon lifetimes even at dim-6 level

Ľ	\mathcal{B}_Q	$\Gamma_3^{ m NL}$	$\Gamma_3^{ m SL}$	$\Gamma_{ ho}$	$\Gamma_6^{ m NL}$	$\Gamma_6^{ m SL}$	$\Gamma_7^{ m NL}$	$\Gamma_7^{ m SL}$	au	$ au_{ m exp}$
^ +	LO	0.85	0.40	0	0.75	0.01	0.49	0	2.63 ± 51	2.020 ± 0.011
Λ_c	NLO	1.27	0.35	0.07	1.26	0.01	0.49	0	1.92 ± 0.37	2.029 ± 0.011
<u>-</u> 0	LO	0.86	0.40	0	1.74	0.36	0.22	-0.15	1.92 ± 0.37	1 505 0 010
Ξ_c	NLO	1.27	0.35	0.07	2.01	0.18	0.22	-0.15	1.66 ± 0.32	1.300 ± 0.019
+	LO	0.86	0.40	0	0.26	0.35	-0.09	-0.15	4.04 ± 0.94	4 52 + 0.05
Ξ_c	NLO	1.27	0.35	0.07	0.38	0.18	-0.09	-0.15	3.27 ± 0.76	4.03 ± 0.05
Ω^0	LO	0.91	0.42	0	2.34	1.22	-1.09	-0.83	2.22 ± 0.46	0.72 + 0.10
۵ <i>۷_C</i>	NLO	1.34	0.37	0.11	2.37	0.61	-1.09	-0.83	2.30 ± 0.58	2.73 ± 0.12

au in units of 10^{-13} s

Uncertainties arise from m_c , μ_H , $I^q_{B_c}$, and the deviation of full QCD from HQET

- **All predicted lifetimes are improved to NLO except for** Ξ_c^+
- **\Gamma_6 > \Gamma_3 for c-baryons**, recalling that $\Gamma_3 > \Gamma_6$ for b-baryons
- Because of large destructive contributions from Γ₇^{NL} and Γ₇^{SL}, Ω_c⁰ could live longer than Λ_c⁺
 - to dim-6 $\Rightarrow \tau(\Xi_c^+) > \tau(\Lambda_c^+) > \tau(\Xi_c^0) > \tau(\Omega_c^0)$ to dim-7 $\Rightarrow \tau(\Xi_c^+) > \tau(\Omega_c^0) > \tau(\Lambda_c^+) > \tau(\Xi_c^0)$

(au in units of 10^{-13} s)

BM	NRQM	Expt
1.92 ± 0.37		2.029 ± 0.011
1.66 ± 0.32		1.505 ± 0.019
3.27 ± 0.76		4.53 ± 0.05
2.30 ± 0.58		2.73 ± 0.12

NRQM: Gratrex, Melic, Nisandzic ('22) in the pole mass scheme

We use the pole mass $m_c = 1.59 \pm 0.09$ GeV, 2-loop (1-loop) result for upper (lower) bounds

While the predicted lifetimes for Λ_c^+ and Ξ_c^0 are improved in the bag model, $\tau(\Xi_c^+)$ becomes even worse.

Semileptonic inclusive BFs: $\mathcal{BF}_e^{SL} \equiv \tau(\mathcal{B}_Q)\Gamma(\mathcal{B}_Q \to Xe^+\nu_\ell)$

(in %)									
BM	NRQM	Expt							
4.57 ± 0.54		3.95 ± 0.35							
4.40 ± 0.61									
8.57 ± 0.49									
1.88 ± 1.69									
9.90 ± 0.03									
9.94 ± 0.06									
10.38 ± 0.09									
10.76 ± 0.14									

Predicted BFs of $\Xi_c^+ \to Xe^+\nu_e$, $\Omega_c^0 \to Xe^+\nu_e$ in bag model and NRQM both in the pole mass scheme are in sharp contrast \Rightarrow allowed to discriminate between different models

- Baryonic matrix elements are evaluated in the improved bag model. Heavy quark limit holds reasonably well in BM but is badly respected in NRQM.
- HQE in 1/m_b works well for the lifetimes of bottom baryons.
- HQE in 1/m_c fails to provide a satisfactory description of the lifetimes charmed baryons to O(1/m_c³). Need to consider subleading 1/m_c corrections to spectator effects.
- The Ω_c⁰ lifetime could live longer than Λ_c⁰ due to the suppression from 1/m_c corrections arising from dim-7 4-quark operators

Backup Slides

Model		Λ_b^0	$\Xi_b^{0,-}$	Ω_b^-	Λ_c^+	$\Xi_c^{0,+}$	Ω_c^0	
	μ_π^2	4.66(28)	4.45(27)	4.34(80)	4.42(81)	4.30(80)	4.20(80)	$\mu^2_{\pi,G}$ in units of $10^{-1}GeV^2$
BM	μ_G^2	0	0	2.09(12)	0	0	1.95(38)	
0	$ ho_D^3$	2.29(23)	2.38(24)	2.66(27)	2.06(21)	2.22(22)	2.68(27)	$ ho_D^3$ in units of $10^{-2} GeV^3$
	μ_π^2	5.0(6)	5.4(6)	5.6(6)	5.0(15)	5.5(17)	5.5(17)	
NRQM	μ_G^2	0	0	1.93(68)	0	0	2.6(8)	
	$ ho_D^3$	3.1(9)	3.7(9)	5.0(21)	4(1)	5.5(20)	6(2)	

NRQM: Gratrex, Melic, Nisandzic ('22) for c-baryons; Gratrex, Lenz, Melic, Nisandzic, Piscopo, Rusov ('23) for b-baryons

- In the bag model μ_{π}^2 , μ_G^2 , ρ_D^3 all depend weakly on the heavy quark flavor
- In both BM & NRQM, ρ_D^3 respects the same hierarchy $\Omega_Q > \Xi_Q > \Lambda_Q$ induced by the strange quark mass. It shares similar values for T_Q & Ω_Q in the bag model.

$$\rho_D^3 = -4\pi\alpha_s \sum_q \frac{1}{24} \left(4L_{\mathcal{B}_Q}^q - \tilde{L}_{\mathcal{B}_Q}^q - 6S_{\mathcal{B}_Q}^q + 2\tilde{S}_{\mathcal{B}_Q}^q + 6P_{\mathcal{B}_Q}^q - 2\tilde{P}_{\mathcal{B}_Q}^q \right)$$

\mathcal{B}_Q		$\Gamma_3^{ m NL}$	$\Gamma_3^{ m SL}$	τ	$ au_{ m exp}$
Λ_c^+	LO	$0.85(29)_m$	$0.40(13)_m$	$2.63(46)_m(15)_\mu(12)_4(11)_s$	2.029(11)
	NLO	$1.27(42)_m$	$0.35(11)_m$	$1.92(34)_m(11)_\mu(10)_4(5)_s$	
Ξ_c^0	LO	$0.86(28)_m$	$0.40(14)_m$	$1.92(31)_m(14)_\mu(12)_4(7)_s$	1.505(19)
	NLO	$1.27(42)_m$	$0.35(12)_m$	$1.66(28)_m(11)_\mu(9)_4(6)_s$	
Ξ_c^+	LO	$0.86(28)_m$	$0.40(14)_m$	$4.04(92)_m(10)_\mu(9)_4(12)_s$	4.53(5)
	NLO	$1.27(42)_m$	$0.35(12)_m$	$3.27(75)_m(7)_\mu(6)_4(6)_s$	
Ω_c^0	LO	$0.91(30)_m$	$0.42(14)_m$	$2.22(44)_m(14)_\mu(12)_4(1)_s$	2.43(12)
	NLO	$1.34(44)_m$	$0.37(12)_m$	$2.30(51)_m(10)_\mu(9)_4(24)_s$	
Λ_b	LO	$2.28(33)_m$	$1.67(18)_m$	$1.63(15)_m(1)_\mu(0)_4(1)_s$	1.471(9)
	NLO	$2.78(42)_m$	$1.56(17)_m$	$1.48(22)_m(1)_\mu(0)_4(1)_s$	
Ξ_b^0	LO	$2.28(33)_m$	$1.67(18)_m$	$1.63(15)_m(1)_\mu(1)_4(1)_s$	1.480(30)
	NLO	$2.78(41)_m$	$1.56(17)_m$	$1.49(22)_m(0)_\mu(0)_4(0)_s$	
Ξ_b^-	LO	$2.28(33)_m$	$1.67(18)_m$	$1.70(27)_m(1)_\mu(1)_4(1)_s$	1.572(40)
	NLO	$2.78(41)_m$	$1.56(17)_m$	$1.55(23)_m(1)_\mu(0)_4(1)_s$	
Ω_b^-	LO	$2.28(33)_m$	$1.67(18)_m$	$1.76(28)_m(2)_\mu(2)_4(1)_s$	$1.64\substack{+0.18 \\ -0.17}$
	NLO	$2.77(41)_m$	$1.55(16)_m$	$1.60(25)_m(1)_\mu(0)_4(1)_s$	

Uncertainties from $m_Q, \mu_H, \langle O_{4q} \rangle$, deviation of full QCD from HQET are denoted by the subscripts $m, \mu, 4, s$, respectively.

Matrix elements of dim-7 4-quark operators:

$$\langle P_i^q \rangle_{\mathcal{B}_Q} = m_q \left(S_{\mathcal{B}_Q}^q + P_{\mathcal{B}_Q}^q \right) \quad \text{for } i = 1, 2 , \langle P_3^q \rangle_{\mathcal{B}_Q} = E_q L_{\mathcal{B}_Q}^q , \quad \langle P_4^q \rangle_{\mathcal{B}_Q} = E_q \left(S_{\mathcal{B}_Q}^q - P_{\mathcal{B}_Q}^q \right)$$