$11^{\text {th }}$ International Workshop on Charm Physics（CHARM 2023）

Zhi－yong Wang（王至勇）
（On behalf of BESIII Collaboration）
IHEP，CAS，Beijing，China
Jul．17－21，2023，Siegen，Germany

Outline

$>$ Introduction
\checkmark Physics motivation
\checkmark BESIII experiment
$>$ Recent Physics Highlights on χ_{cJ} and ψ decays

- Measurement of $\mathrm{B}\left(\psi(3686) \rightarrow \phi K_{S}^{0} K_{S}^{0}\right)$
- Helicity amplitude analysis of $\chi_{c J} \rightarrow \phi \phi$
- Observation of $\chi_{c J} \rightarrow \Omega^{-} \bar{\Omega}^{+}$
- Observation of $\boldsymbol{\psi}(\mathbf{3 7 7 0}) \rightarrow \eta J / \psi$
$>$ Summary

Physics Motivation

The decays of J / ψ and $\psi(3686)$ to hadronic final states are used to test the " 12% rule".

$$
Q_{h}=\frac{\mathcal{B}_{\psi(3686) \rightarrow h}}{\mathcal{B}_{J / \psi \rightarrow h}} \approx \frac{\mathcal{B}_{\psi(3686) \rightarrow e^{+} e^{-}}}{\mathcal{B}_{J / \psi \rightarrow e^{+} e^{-}}} \approx 13.3 \%
$$

The baryon/meson pair decays of $\chi_{\mathbf{c} 0,1,2}$ are essential to test pQCD, e.g. helicity selection rule (HSR) . In addition, it is used to test color-octet mechanism (COM).

* The search of $\psi(3770)$ non-DD decay modes is helpful to understand not only the properties of $\psi(3770)$ and $\psi(3686)$, e.g., 2S-1D mixing, but also for exotic charmoniumlike (XYZ) states.

$$
\text { Kind reminder: } \quad \psi(3686) \equiv \psi(2 S) \equiv \psi^{\prime}
$$

Charmonium Spectrum

Traditional charmonium

states are named as
$\eta_{c}, \psi, h_{c}, \chi_{c} \ldots \ldots$
charmoniumlike states are named with "XYZ" states,

BESIII Detector

BESIII Data Collections

\checkmark BESIII detector has collected the largest data samples in the ψ energy region in the world.
$\checkmark \sim 30 \%$ of $\psi(3686)$ produces $\chi_{c J}$ in its EM radiative transition decay.

Recent Physics Highlights on $\chi_{c J}$ and ψ decays

BESIII

- Measurement of $\mathrm{B}\left[\psi(3686) \rightarrow \phi K_{S}^{0} K_{S}^{0}\right]$
- Helicity amplitude analysis of $\chi_{c J} \rightarrow \phi \phi$
- Observation of $\chi_{c J} \rightarrow \Omega^{-} \bar{\Omega}^{+}$
- Observation of $\psi(3770) \rightarrow \eta J / \psi$

Measurement of $\mathrm{B}\left[\psi(3686) \rightarrow \phi K_{S}^{0} K_{S}^{0}\right]$

- The QED background is investigated using the continuum data @ 3.65 GeV by luminosity normalization. It is determined to be $\bar{N}_{Q E D}=108 \pm 5$
- The interference between $\psi(3686)$ and continuum production is considered by fitting to the cross section around $\psi(3686)$. The number of events due to interference is determined to be $N_{\text {inter }}=228 \pm 24$
$\mathcal{B}_{\psi(3686) \rightarrow \phi K_{S}^{0} K_{S}^{0}}=\frac{N_{\text {net }}^{\psi(3686)}-\bar{N}_{\text {QED }}-N_{\text {inter }}}{N_{\psi(3686)} \cdot \varepsilon \cdot \mathcal{B}_{\phi \rightarrow K^{+} K^{-}} \cdot \mathcal{B}_{K_{S}^{0} \rightarrow \pi^{+} \pi^{-}}^{2}}=(3.53 \pm 0.20 \pm 0.21) \times 10^{-5}$
$Q_{\psi(3686) \rightarrow \phi K_{S}^{0} K_{S}^{0}}=(6.0 \pm 1.6) \%$, which is suppressed relative to " 12% rule"

Helicity amplitude analysis of $\chi_{c J} \rightarrow \phi \phi(1)$

> The asymptotic behavior of the BF of charmonium state $\psi(\lambda)$ decaying into light hadron $h_{1}\left(\lambda_{1}\right)$ and $h_{2}\left(\lambda_{2}\right)$ is evaluated in pQCD calculation

JHEP05, (2023) 069

(a)
where, λ denotes the helicity of hadrons, Λ_{QCD} denotes the QCD scale parameter
$>$ The $\chi_{\mathrm{c} 1}$ decay rate is suppressed relative to $\chi_{\mathrm{c} 0,2}$ due to helicity selection rule (HSR) according to pQCD prediction, which is not consistent with the experimental measurement.

Definitions of helicity angle

Helicity amplitude analysis of $\chi_{c J} \rightarrow \phi \phi$ (2)

Decay Mode	Helicity Angle	Amplitude
$\psi(3686)(M) \rightarrow R_{i}\left(\lambda_{R}\right) \gamma\left(\lambda_{\gamma}\right)$	θ_{0}	$A_{\lambda_{\gamma}, \lambda_{R}}^{1} D_{M, \lambda_{R}-\lambda_{\gamma}}^{1 *}\left(0, \theta_{0}, 0\right)$
$R_{i}\left(\lambda_{R}\right) \rightarrow \phi\left(\lambda_{1}\right) \phi\left(\lambda_{2}\right)$	θ_{1}, ϕ_{1}	$F_{\lambda_{1}, \lambda_{2}}^{J} D_{\lambda_{R}, \lambda_{1}-\lambda_{2}}^{J_{2}^{*}}\left(\phi_{1}, \theta_{0}, 0\right)$
$\phi\left(\lambda_{1}\right) \rightarrow K^{+}\left(0^{-}\right) K^{-}\left(0^{-}\right)$	θ_{2}, ϕ_{2}	$B_{0,0}^{1} D_{\lambda_{1}, 0}^{1 *}\left(\phi_{2}, \theta_{2}, 0\right)$
$\phi\left(\lambda_{2}\right) \rightarrow K^{+}\left(0^{-}\right) K^{-}\left(0^{-}\right)$	θ_{3}, ϕ_{3}	$B_{0,0}^{1} D_{\lambda_{2}, 0}^{1 *}\left(\phi_{3}, \theta_{3}, 0\right)$

Table 2. Definitions of helicity angles and amplitudes of sequential decays.

For $\chi_{c 1} \rightarrow \phi \phi$, the ratios of amplitude moduli (T/L) are determined to be

$$
u_{1}=\left|F_{1,0}^{1}\right| F_{0,1}^{1} \mid=1.05 \pm 0.05 \text { and } u_{2}=\left|F_{1,1}^{1} / F_{1,0}^{1}\right|=0.07 \pm 0.04 .
$$

The results are consistent with the expectation of identical particle symmetry and parity conservation.

Helicity amplitude analysis of $\chi_{c J} \rightarrow \phi \phi$ (3)

For $\chi_{c 0}$

$$
\begin{array}{||l|l|l|}
\hline\left|F_{1,1}^{0}\right| /\left|F_{0,0}^{0}\right|=0.299 \pm 0.003 \pm 0.019 \\
\hline
\end{array}
$$

$$
\left|F_{0,1}^{2}\right| /\left|F_{0,0}^{2}\right|=1.265 \pm 0.054 \pm 0.079
$$

For $\chi_{\mathbf{c} 2} \longrightarrow\left|F_{1,-1}^{2}\right| /\left|F_{0,0}^{2}\right|=1.450 \pm 0.097 \pm 0.104$

$$
\left|F_{1,1}^{2}\right| /\left|F_{0,0}^{2}\right|=0.808 \pm 0.051 \pm 0.009
$$

Decay Mode	2011 BESIII $[8]$	this work	PDG value $[22]$
$\mathcal{B}\left[\chi_{c 0} \rightarrow \phi \phi\right]\left(\times 10^{-4}\right)$	$7.8 \pm 0.4 \pm 0.8$	$8.59 \pm 0.27 \pm 0.20$	8.0 ± 0.7
$\mathcal{B}\left[\chi_{c 1} \rightarrow \phi \phi\right]\left(\times 10^{-4}\right)$	$4.1 \pm 0.3 \pm 0.5$	$4.26 \pm 0.13 \pm 0.15$	4.2 ± 0.5
$\mathcal{B}\left[\chi_{c 1} \rightarrow \phi \phi\right]\left(\times 10^{-4}\right)$	$10.7 \pm 0.4 \pm 1.2$	$12.67 \pm 0.28 \pm 0.33$	10.6 ± 0.9

Table 6. Comparsion of measured branching fractions (\mathcal{B}).
This measurements are the most precise!

Observation of $\chi_{c J} \rightarrow \Omega^{-} \bar{\Omega}^{+}$

$>$ This decay is unique due to the presence of three pairs of strange quarks in the final state.
$>\Omega$ is the only baryon of the ground-state decuplet decaying through weak interaction. Therefore, it has a long lifetime.
> Single baryon reconstruction technique is applied to enhance the detection efficiency. i.e., we reconstruct Ω^{-}, and $\bar{\Omega}^{+}$is tagged by the recoil mass.

Mode	$N_{\chi_{c J}}^{\text {obs }}$	$\epsilon_{\chi_{c J}}(\%)$	Sig. (σ)	$\mathcal{B}\left(\times 10^{-5}\right)$
$\chi_{c 0}$	284 ± 44	3.05	5.6	3.51 ± 0.54
$\chi_{c 1}$	277 ± 42	7.02	6.4	1.49 ± 0.23
$\chi_{c 2}$	1038 ± 56	8.91	18	4.52 ± 0.24

> The measured $\chi_{\mathrm{c} 0}$ decay branching fraction is obviously small than those decaying into with spin $1 / 2$ and $3 / 2$.

PRD 107, 092004 (2023)

Observation of $\psi(3770) \rightarrow \eta J / \psi$

> The Born cross section at 3.773 GeV is determined by

$$
\begin{aligned}
& \sigma^{B}\left(e^{+} e^{-} \rightarrow \eta J / \psi\right)=\frac{N^{\text {obs }}}{\mathcal{L} \cdot\left(1+\delta^{\mathrm{ISR}}\right) \cdot\left(1+\delta^{\mathrm{VP}}\right) \cdot \varepsilon \cdot \mathcal{B} r}, \\
&=\left(8.88 \pm 0.87_{\text {stat }} \pm 0.42_{\text {sys. }}\right) \mathrm{pb} \\
& \mathcal{B}(\psi(3770) \rightarrow \eta \mathrm{J} / \Psi)=\left(8.7 \pm 1.0_{\text {stat }} \pm 0.8_{\text {sys. }}\right) \times 10^{-4}
\end{aligned}
$$ is determined by the global fit to line-shape without considering the interference with the other processes, which is close to CLEO's result.

$>$ If consider the interference, the BF varies between $\left.11.2 \pm 5 . \mathbf{8}_{\text {stat }} \pm 1.1_{\text {sys. }}\right) \times \mathbf{1 0}^{-4}$ to $\left.11.6 \pm 6.0_{\text {stat }} \pm 1.1_{\text {sys. }}\right) \times 10^{-4}$ PRD 107, L091101 (2023)
$>$ The statistical significance is above 7σ whether the interference is considered or not

Summary

* The branching fraction of $\psi(3686) \rightarrow \phi K_{S}^{0} K_{S}^{0}$ is observed for the first time, and the ratio $\mathcal{B}\left(\psi(3686) \rightarrow \phi K_{S}^{0} K_{S}^{0}\right) / \mathcal{B}\left(J / \psi \rightarrow \phi K_{S}^{0} K_{S}^{0}\right)$ is found to be suppressed relative to " 12% rule".
\star The branching fractions for $\chi_{c J} \rightarrow \phi \phi$ are significantly improved, and the corresponding polarization parameters are measured for the first time.
$\chi_{c J} \rightarrow \Omega^{-} \bar{\Omega}^{+}$are firstly observed and the corresponding branching fractions are measured.
* A new non-DD decay mode, $\psi(3770) \rightarrow \eta \mathrm{J} / \psi$, is confirmed, and the corresponding branching fraction is measured with and without considering the interference.
Much more results will be presented in the future.

> Thank you!

Backup

$\psi(3686) \rightarrow \phi K_{S}^{0} K_{S}^{0}$

FIG. 3. Dalitz plots of $M_{\phi K_{S 1}^{0}}^{2}$ vs. $M_{\phi K_{S 2}^{0}}^{2}$ for the accepted candidates in (a) data and (b) BODY3 signal MC events.

$$
\sigma^{\mathrm{dressed}}(s)=\left|A_{\mathrm{cont}}(s)+A_{\mathrm{res}}(s) \times e^{i \varphi}\right|^{2}
$$

(a)

(b)

Helicity amplitude analysis of $\chi_{c J} \rightarrow \phi \phi$

Then the joint amplitude for the sequential process is obtained by

$$
\begin{aligned}
\mathcal{M}\left(R_{i}\right)= & \frac{1}{2} \sum_{M, \lambda_{R}, \lambda_{1}, \lambda_{2}} A_{\lambda_{R}, \lambda_{\gamma}}^{1} D_{M, \lambda_{R}-\lambda_{\gamma}}^{1 *}\left(0, \theta_{0}, 0\right) F_{\lambda_{1}, \lambda_{2}}^{J} D_{\lambda_{R}, \lambda_{1}-\lambda_{2}}^{J *}\left(\phi_{1}, \theta_{0}, 0\right) \\
& \times B_{0,0}^{1} D_{\lambda_{1}, 0}^{1 *}\left(\phi_{2}, \theta_{2}, 0\right) B_{0,0}^{1} D_{\lambda_{2}, 0}^{1 *}\left(\phi_{3}, \theta_{3}, 0\right) B W\left(m_{\phi \phi}, m_{i}, \Gamma_{i}\right),
\end{aligned}
$$

$\psi(3770) \rightarrow \eta J / \psi$

$$
\begin{aligned}
\sigma_{\mathrm{co}}= & \mid C \cdot \sqrt{\Phi(s)}+e^{i \phi_{1}} \mathrm{BW}_{\psi(3770)}+e^{i \phi_{2}} \mathrm{BW}_{\psi(4040)} \\
& +e^{i \phi_{3}} \mathrm{BW}_{Y(4230)}+\left.e^{i \phi_{4}} \mathrm{BW}_{Y(4390)}\right|^{2} \\
\sigma_{\text {inco }}= & \left|\mathrm{BW}_{\psi(3770)}\right|^{2}+\mid C \cdot \sqrt{\Phi(s)}+e^{i \phi_{2}} \mathrm{BW}_{\psi(4040)} \\
& +e^{i \phi_{3}} \mathrm{BW}_{Y(4230)}+\left.e^{i \phi_{4}} \mathrm{BW}_{Y(4390)}\right|^{2}
\end{aligned}
$$

TABLE III. Fitting results of the $e^{+} e^{-} \rightarrow \eta J / \psi$ decay. The uncertainties on the branching fractions and ϕ are statistical and systematic. The C_{0} of the four solutions in the coherent fit are the same.

	Coherent fit				
Parameters	Solution1	Solution2	Solution3	Solution4	Incoherent fit
$M_{1}\left(\mathrm{MeV} / c^{2}\right)$		3773.7 (fixed)	3773.7 (fixed)		
$\Gamma_{1}(\mathrm{MeV})$		27.2 (fixed)		27.2 (fixed)	
C_{0}		13.3 ± 1.9	11.0 ± 1.6		
$\mathcal{B} r_{1}\left(\times 10^{-4}\right)$	$11.3 \pm 5.9 \pm 1.1$	$11.6 \pm 6.0 \pm 1.1$	$11.2 \pm 5.8 \pm 1.1$	$11.5 \pm 6.0 \pm 1.1$	$8.7 \pm 1.0 \pm 0.8$
$\phi_{1}(\mathrm{rad})$	$3.9 \pm 0.6 \pm 0.07$	$4.2 \pm 0.6 \pm 0.09$	$3.7 \pm 0.6 \pm 0.05$	$4.1 \pm 0.6 \pm 0.08$	

$\psi(3770) \rightarrow \eta J / \psi$

TABLE IV. Relative systematic uncertainties in percent on the branching fraction of $\psi(3770) \rightarrow \eta J / \psi$.

Source	Coherent fit								Incoherent fit
	Solution1		Solution2		Solution3		Solution4		
	Br	ϕ	Br	ϕ	Br	ϕ	Br	ϕ	Br
Center-of-mass energy	3.3	0.2	3.5	0.1	3.4	0.1	3.2	0.2	2.1
Energy spread	0.8	0.1	0.9	0.1	0.9	0.1	0.8	0.1	1.0
$\psi(3770)$ mass	1.5	0.1	1.4	0.1	1.5	0.1	1.4	0.1	0.9
$\psi(3770)$ width	4.2	0.1	4.2	0.1	4.1	0.1	4.1	0.1	3.6
$\psi(3770) \Gamma_{e^{+} e^{-}}$	6.9		6.9		6.9		6.9		6.9
$\psi(4040)$ mass	0.5	0.4	0.2	0.1	0.4	0.3	0.3	0.1	0.4
$\psi(4040)$ width	0.7	0.3	1.0	0.8	1.1	0.5	0.8	0.8	0.7
Continuum term	0.9	1.8	0.9	2.0	0.9	1.3	1.0	1.6	1.3
Correlated systematic uncertainties	3.0		3.0		3.0		3.0		3.0
Uncorrelated systematic uncertainties	0.2	0.1	0.1	0.1	0.1	0.1	2.0	0.5	0.1
Total	9.5	1.9	9.5	2.2	9.5	1.4	9.6	1.9	8.8

