Probing invisibles with rare charm decays 11th International Workshop on Charm Physics - Siegen 2023

Dominik Suelmann

w/ G. Hiller

Supported by the Federal Ministry for Education and Research (BMBF)

TU Dortmund Department of Physics

17 July 2023

Bundesministerium für Bildung und Forschung

Why are we interested in invisible rare charm decays?

 $c \to u \nu \bar{\nu}$

igsqrmathharpoon Strong GIM and CKM suppression in $c
ightarrow u
u ar{
u}$

Branching ratio limits are for $b \to s\nu\bar{\nu}$ a factor of few away from SM prediction and for $c \to u\nu\bar{\nu}$ null tests of SM Bause et al. 2021

 \blacktriangleright Light NP might be hiding in missing energy modes ightarrow light $u_L +
u_R$, light Z', ALPs a

• Complementary to kaon and *B*-physics, but very few measurements in charm

Probing invisibles with rare charm decays

1. Light $u_L + u_R$ EFT

Effective Hamiltonian Bause et al. 2021 :

$$\mathcal{H}_{\text{eff}}^{\nu_i \bar{\nu}_j} = -\frac{4G_F}{\sqrt{2}}\sum_k C_k^{ij} \cdot Q_k^{ij} + \text{h.c.}$$

Operators with left-handed neutrinos:

$$\text{only } \nu_L \begin{cases} Q_{LL}^{ij} &= (\bar{u}_L \gamma_\mu c_L) (\bar{\nu}_{jL} \gamma^\mu \nu_{iL}) \\ Q_{RL}^{ij} &= (\bar{u}_R \gamma_\mu c_R) (\bar{\nu}_{jL} \gamma^\mu \nu_{iL}) \end{cases} \end{cases}$$

GIM and CKM suppression

$$\blacktriangleright \ C^{ij}_{LL,{\rm SM}}\approx 0, \ C^{ij}_{RL,{\rm SM}}\approx 0$$

1. Light $u_L + u_R$ EFT

Effective Hamiltonian Bause et al. 2021 :

$$\mathcal{H}_{\text{eff}}^{\nu_i\bar{\nu}_j} = -\frac{4G_F}{\sqrt{2}}\sum_k C_k^{ij}\cdot Q_k^{ij} + \text{h.c.}$$

Operators with left-handed neutrinos:

$$\text{only} \ \nu_L \begin{cases} Q_{LL}^{ij} &= (\bar{u}_L \gamma_\mu c_L) (\bar{\nu}_{jL} \gamma^\mu \nu_{iL}) \\ Q_{RL}^{ij} &= (\bar{u}_R \gamma_\mu c_R) (\bar{\nu}_{jL} \gamma^\mu \nu_{iL}) \end{cases} \end{cases}$$

GIM and CKM suppression

$$\blacktriangleright \ C^{ij}_{LL,{\rm SM}}\approx 0, \ C^{ij}_{RL,{\rm SM}}\approx 0$$

Operators including light right-handed neutrinos:

$$\nu_L + \nu_R \begin{cases} Q_{LR}^{ij} &= (\bar{u}_L \gamma_\mu c_L) (\bar{\nu}_{jR} \gamma^\mu \nu_{iR}) \\ Q_{RR}^{ij} &= (\bar{u}_R \gamma_\mu c_R) (\bar{\nu}_{jR} \gamma^\mu \nu_{iR}) \\ Q_S^{ij} &= (\bar{u}_L c_R) (\bar{\nu}_j \nu_i) \\ Q_P^{ij} &= (\bar{u}_L c_R) (\bar{\nu}_j \gamma_5 \nu_i) \\ Q_S^{\prime ij} &= (\bar{u}_R c_L) (\bar{\nu}_j \nu_i) \\ Q_P^{\prime ij} &= (\bar{u}_R c_L) (\bar{\nu}_j \sigma^{\mu\nu} \nu_i) \\ Q_T^{ij} &= (\bar{u}\sigma_{\mu\nu} c) (\bar{\nu}_j \sigma^{\mu\nu} \gamma_5 \nu_i) \\ Q_{T_5}^{ij} &= (\bar{u}\sigma_{\mu\nu} c) (\bar{\nu}_j \sigma^{\mu\nu} \gamma_5 \nu_i) \end{cases}$$

2. Light $Z^{'}$ EFT

- Light Z' as a vector-boson of an additional U(1)' gauge-symmetry and a dark BSM fermion χ coupling only to Z'
- Consider smaller masses $m_{Z'} \ll m_W$ and dominant decay channel to invisible final states $\Gamma_{Z'} \equiv \Gamma(Z' \to \chi \bar{\chi})$

EFT vector coupling to χ and up-type quarks

$$\begin{split} \mathcal{L}_{Z'}^{\text{eff}} \supset C_L^{Z'} \bar{u}_L \gamma^\mu c_L Z'_\mu + C_R^{Z'} \bar{u}_R \gamma^\mu c_R Z'_\mu \\ &+ C_\chi^{Z'} \bar{\chi} \gamma^\mu \chi Z'_\mu + \text{h.c.} \;. \end{split}$$

Dipole coupling to Z'

$$\mathcal{L}_{Z'}^{\text{eff}} \supset \frac{1}{\Lambda_{\text{eff}}} \bar{u} \left(C_D^{Z'} + \gamma_5 C_{D5}^{Z'} \right) \sigma^{\mu\nu} \, c \, Z'_{\mu\nu} + \text{h.c.}$$

- Axion-like particles (ALPs) EFT Bauer et al. 2021 with ALPs a as pseudo Nambu-Goldstone bosons from spontaneous breaking of a global symmetry
- ALPs have mass m_a and include the QCD axion for certain parameters
- We consider lifetimes of ALPs for which they decay dominantly outside the detector
- Allows an interpretation of $h_c \rightarrow F + invisible$ as two-body decays

$$\mathcal{L}_{\mathsf{ALP}}^{c \to u} = \frac{\partial^{\mu} a}{2f} \Big(k_{12}^V \, \bar{u} \, \gamma_{\mu} \, c + k_{12}^A \, \bar{u} \, \gamma_{\mu} \gamma_5 \, c \Big) + \mathsf{h.c.} \, .$$

Differential Branching Fractions

$$\begin{split} \frac{d\mathcal{B}\left(D^0 \rightarrow \pi^0 + invisible\right)}{dq^2} \\ \frac{d\mathcal{B}\left(\Lambda_c^+ \rightarrow p^+ + invisible\right)}{dq^2}, \quad q^2 = (p_1 - p_2)^2 \\ \frac{d\mathcal{B}}{dq^2} = \frac{1}{2m_{h_c}} \frac{d\mathcal{B}r}{dE_{\mathsf{miss}}}, \quad E_{\mathsf{miss}} = \frac{m_{h_c}^2 - m_F^2 + q^2}{2m_{h_c}} \end{split}$$

Branching Fractions

$$\begin{split} & \mathcal{B}\left(D^{0} \rightarrow invisible\right) \\ & \mathcal{B}\left(D^{0} \rightarrow \pi^{0} + invisible\right) \\ & \mathcal{B}\left(\Lambda_{c}^{+} \rightarrow p^{+} + invisible\right) \end{split}$$

 \blacktriangleright Calculate differential branching fraction using LatticeQCD form factors $\Lambda_c o p$, $D o \pi$

Differential branching fraction allows separation of various NP models

Extend to $SU(3)_F$ -related decays $\Xi_c \to \Sigma^+$, $D^+ \to \pi^+$, $D_s^+ \to K^+$

 $\mathcal{B}(D^0 \to inv.) < 9.4 \cdot 10^{-5} \ @ 90\% C.L.$

Only Scalar- and Pseudoscalar WCs contribute

$$\begin{split} \mathcal{B}(D^0 \rightarrow \nu \bar{\nu}) &\approx \frac{G_F^2 \alpha_e^2 f_D^2 m_{D^0}^5 \tau_{D^0}}{64 \pi^3 m_c^2} x_{SP-} \\ x_{SP\pm} &= \sum_{\substack{\text{flavor} \\ ij}} \left| C_S^{ij} \pm C_S^{\prime ij} \right|^2 + \left| C_P^{ij} \pm C_P^{\prime ij} \right|^2 \end{split}$$

Limit on x_{SP}

$$|\sqrt{x_{SP-}}| \lesssim 8.2$$

Experimental Limits for $u_L + u_R$ EFT

$$D^0 \rightarrow \pi^0 + inv.$$
 BESIII 202

$$D^0 \rightarrow inv.$$
 Belle 2016

- $\mathcal{B}(D^0 \to inv.) < 9.4 \cdot 10^{-5} \ @\ 90\% C.L.$
- Only Scalar- and Pseudoscalar WCs contribute

$$\begin{split} \mathcal{B}(D^0 \rightarrow \nu \bar{\nu}) &\approx \frac{G_F^2 \alpha_e^2 f_D^2 m_{D^0}^5 \tau_{D^0}}{64 \pi^3 m_c^2} x_{SP-} \\ x_{SP\pm} &= \sum_{\substack{\text{flavor} \\ ij}} \left| C_S^{ij} \pm C_S'^{ij} \right|^2 + \left| C_P^{ij} \pm C_P'^{ij} \right|^2 \end{split}$$

Limit on x_{SP}

$$\left|\sqrt{x_{SP-}}\right| \lesssim 8.2$$

 $\mathcal{B}(D^0 \to \pi^0 \nu \bar{\nu}) < 2.1 \cdot 10^{-4} \ @ 90\% C.L.$

Only 3 kinds of WC combinations contribute

$$\begin{aligned} \mathcal{B}(D^{0} \to \pi^{0} \nu \bar{\nu}) &= A_{SP+}^{D \to \pi} x_{SP+} + A_{T}^{D \to \pi} x_{T} \\ &+ A_{LR+}^{D \to \pi} x_{LR+} \\ x_{LR+} &= \sum_{ij} \left| C_{LL}^{ij} + C_{RL}^{ij} \right|^{2} + \left| C_{RR}^{ij} + C_{LR}^{ij} \right|^{2} \\ x_{T} &= \sum_{ij} \left| C_{T}^{ij} \right|^{2} + \left| C_{T_{5}}^{ij} \right|^{2} \end{aligned}$$

Give upper limits on the coefficients

 $|\sqrt{x_{SP+}}| \lesssim 76, \ |\sqrt{x_{LR+}}| \lesssim 154, \ |\sqrt{x_T}| \lesssim 51$

Vector- and axial-vector

$$x_{L\pm} = \sum_{ij} \left| C_{LL}^{ij} \pm C_{RL}^{ij} \right|^2$$

- Upper limits Bause et al. 2021 on $x_L = \frac{x_{L+}+x_{L-}}{2}$ through $SU(2)_L$ link
 - $x_L \lesssim 34$, Lepton Universal (LU) $x_L \lesssim 196$, charged lepton flavor conservation (cLFC)
 - $x_L \lesssim 716$, general

Predict upper bounds:

$$\begin{split} \frac{\mathrm{d}\mathcal{B}r\left(\Lambda_c \to p\nu\bar{\nu}\right)}{\mathrm{d}q^2} &= a_+^{\Lambda_c \to p}(q^2)\,x_{L+} \\ &+ a_-^{\Lambda_c \to p}(q^2)\,x_{L-} \end{split}$$

$$x_{L\pm} = \sum_{ij} \left| C_{LL}^{ij} \pm C_{RL}^{ij} \right|^2$$

• Upper limits Bause et al. 2021 on
$$x_L = \frac{x_{L+}+x_{L-}}{2}$$
 through $SU(2)_L$ link

 $x_L \lesssim 34$, Lepton Universal (LU) $x_L \lesssim 196$, charged lepton flavor conservation (cLFC)

 $x_L \lesssim 716, \quad \text{general}$

Predict upper bounds:

$$\begin{split} \frac{\mathrm{d}\mathcal{B}r\left(\Lambda_{c}\rightarrow p\nu\bar{\nu}\right)}{\mathrm{d}q^{2}} &= a_{+}^{\Lambda_{c}\rightarrow p}(q^{2})\,x_{L+} \\ &+ a_{-}^{\Lambda_{c}\rightarrow p}(q^{2})\,x_{L-} \end{split}$$

• direct $\nu_L + \nu_R$ EFT bound weaker than $SU(2)_L$ bound for most of q^2

Experimental Limits for light $Z^{'}$ EFT

 $D^0 \to \pi^0 + inv. \quad {\rm Besill \ 2021}$

$$\mathcal{B}(D^0 \to \pi^0 \nu \bar{\nu}) < 2.1 \cdot 10^{-4} \ @ 90\% C.L.$$

Approximation via two consecutive two-body decays and Breit-Wigner distribution

$$\mathcal{B}(D^0\to\pi^0 Z'(\to\chi\bar\chi))\simeq \int_{q^2_{\rm min}}^{q^2_{\rm max}} dq^2 \varGamma_{Z'}(q^2) BW(q^2) \mathcal{B}(D^0\to\pi^0 Z')(q^2) \ .$$

Two-body branching ratio depends only on vector and dipole WCs

$$\begin{split} \mathcal{B}(D^0 \to \pi^0 Z')(q^2) &= a_V^{Z'}(q^2) |C_L^{Z'} + C_R^{Z'}|^2 + a_D^{Z'}(q^2) \frac{|C_D^{Z'}|^2}{\Lambda_{\text{eff}}^2} \\ &+ a_I^{Z'}(q^2) Re\left\{ (C_L^{Z'} + C_R^{Z'}) C_D^{Z',*} \right\} \end{split}$$

lacksimLimits on coefficients for BM $m_{Z'}=1$ GeV, $\Gamma_{Z'}=10\% m_{Z'}$ and $m_{\chi}=0$ GeV

$$|C_L^{Z'} + C_R^{Z'}| \lesssim 7.2 \cdot 10^{-8} \,, \qquad \frac{|C_D^{Z'}|}{\Lambda_{\rm eff}} \lesssim 1.8 \cdot 10^{-7} {\rm GeV}^{-1}$$

Predictions for differential branching fraction of $\Lambda_c o p + inv$.

▶ Differential branching fraction for $\nu_L + \nu_R$ EFT $D^0 \rightarrow \pi^0 + inv$. BESIII 2021

$$\begin{split} \frac{\mathrm{d}\mathcal{B}\left(\Lambda_{c} \rightarrow p\nu\bar{\nu}\right)}{\mathrm{d}q^{2}} &= a_{SP+}^{\Lambda_{c}\rightarrow p}(q^{2})\,x_{SP+} + a_{SP-}^{\Lambda_{c}\rightarrow p}(q^{2})\,x_{SP-} + a_{T}^{\Lambda_{c}\rightarrow p}(q^{2})\,x_{T} \\ &+ a_{LR+}^{\Lambda_{c}\rightarrow p}(q^{2})\,x_{LR+} + a_{LR-}^{\Lambda_{c}\rightarrow p}(q^{2})\,x_{LR-} \qquad D^{0}\rightarrow inv. \end{split}$$
Belle 2016

Predictions for differential branching fraction of $\Lambda_c o p + inv$.

▶ Differential branching fraction for $\nu_L + \nu_R$ EFT $D^0 \rightarrow \pi^0 + inv$. BESIII 2021

$$\begin{split} \frac{\mathrm{d}\mathcal{B}\left(\Lambda_{c}\rightarrow p\nu\bar{\nu}\right)}{\mathrm{d}q^{2}} &= a_{SP+}^{\Lambda_{c}\rightarrow p}(q^{2})\,x_{SP+} + a_{SP-}^{\Lambda_{c}\rightarrow p}(q^{2})\,x_{SP-} + a_{T}^{\Lambda_{c}\rightarrow p}(q^{2})\,x_{T} \\ &+ a_{LR+}^{\Lambda_{c}\rightarrow p}(q^{2})\,x_{LR+} + a_{LR-}^{\Lambda_{c}\rightarrow p}(q^{2})\,x_{LR-} \qquad D^{0}\rightarrow inv. \end{split}$$
Belle 2016

b Differential branching fraction for Z' EFT

$$\begin{split} \mathcal{B}(\Lambda_c \to pZ')(q^2) &= a_V^{Z'}(q^2)|C_L^{Z'} + C_R^{Z'}|^2 + a_A^{Z'}(q^2)|C_L^{Z'} - C_R^{Z'}|^2 \\ &+ a_D^{Z'}(q^2)\frac{|C_D^{Z'}|^2}{\Lambda_{\text{eff}}^2} + a_{D5}^{Z'}(q^2)\frac{|C_{D5}^{Z'}|^2}{\Lambda_{\text{eff}}^2} \\ &+ a_{I_1}^{Z'}(q^2)Re\left\{(C_L^{Z'} + C_R^{Z'})C_D^{Z',*}\right\} + a_{I_2}^{Z'}(q^2)Re\left\{(C_L^{Z'} - C_R^{Z'})C_{D5}^{Z',*}\right\} \end{split}$$

Predictions for differential branching fraction of $A_c ightarrow p+inv$.

Differential branching fraction for $u_L +
u_R$ EFT $D^0 o \pi^0 + inv$. BESIII 2021

$$\begin{split} \frac{\mathrm{d}\mathcal{B}\left(\Lambda_{c}\rightarrow p\nu\bar{\nu}\right)}{\mathrm{d}q^{2}} &= a_{SP+}^{\Lambda_{c}\rightarrow p}(q^{2})\,x_{SP+} + a_{SP-}^{\Lambda_{c}\rightarrow p}(q^{2})\,x_{SP-} + a_{T}^{\Lambda_{c}\rightarrow p}(q^{2})\,x_{T} \\ &+ a_{LR+}^{\Lambda_{c}\rightarrow p}(q^{2})\,x_{LR+} + a_{LR-}^{\Lambda_{c}\rightarrow p}(q^{2})\,x_{LR-} \qquad D^{0}\rightarrow inv. \end{split}$$
Belle 2016

Differential branching fraction for Z' EFT

$$\begin{split} \mathcal{B}(\Lambda_c \to pZ')(q^2) &= a_V^{Z'}(q^2)|C_L^{Z'} + C_R^{Z'}|^2 + a_A^{Z'}(q^2)|C_L^{Z'} - C_R^{Z'}|^2 \\ &+ a_D^{Z'}(q^2)\frac{|C_D^{Z'}|^2}{\Lambda_{\text{eff}}^2} + a_{D5}^{Z'}(q^2)\frac{|C_{D5}^{Z'}|^2}{\Lambda_{\text{eff}}^2} \\ &+ a_{I_1}^{Z'}(q^2)Re\left\{(C_L^{Z'} + C_R^{Z'})C_D^{Z',*}\right\} + a_{I_2}^{Z'}(q^2)Re\left\{(C_L^{Z'} - C_R^{Z'})C_{D5}^{Z',*}\right\} \end{split}$$

Allows to restrict otherwise unrestricted WCs

$$x_{LR-} = \sum_{\substack{\text{flavor}\\ij}} \left| C_{LL}^{ij} - C_{RL}^{ij} \right|^2 + \left| C_{RR}^{ij} - C_{LR}^{ij} \right|^2 \,, \qquad \frac{|C_{D5}^{Z'}|^2}{\Lambda_{\text{eff}}^2} \,, \qquad |C_L^{Z'} - C_R^{Z'}|^2 \,,$$

- Strongest limit for Scalar- Pseudoscalar
 WCs from D⁰ → inv.
- Other limits are weaker and distinguishable by q² behavior
- Non zero contributions at low q² for Tensor and Vector WCs
- Slope for Scalar-Pseudoscalar WCs at low q²
- Resonance structure for Z' EFT

▶ Obtain branching fractions
$$\mathcal{B}(h_c \to F + inv.) = \int_{q^2_{\min}}^{q^2_{\max}} \mathrm{d}\mathcal{B}/\mathrm{d}q^2$$

 $\blacktriangleright \ q_{\min}^2 = 0.34 \, \mathrm{GeV}^2(0.66 \, \mathrm{GeV}^2) \text{ for } D^+ \rightarrow \pi^+ \text{ (} D_s^+ \rightarrow K^+\text{) to remove tree-level } \tau\text{-background}$

▶ Obtain branching fractions $\mathcal{B}(h_c \to F + inv.) = \int_{q^2_{\min}_{\min}}^{q^2_{\max}} \mathrm{d}\mathcal{B}/\mathrm{d}q^2$

• $q_{\min}^2 = 0.34 \,\text{GeV}^2(0.66 \,\text{GeV}^2)$ for $D^+ \to \pi^+$ ($D_s^+ \to K^+$) to remove tree-level τ -background

		$\nu_{i,l}$	$_{\Sigma}$ and $ u$	$_{i,R}$	 		
$h_c \to F$	$\begin{array}{c} \mathcal{B}_{SP-} \\ [10^{-4}] \end{array}$	$\begin{array}{c} \mathcal{B}_{SP+} \\ [10^{-4}] \end{array}$	$\begin{array}{c} \mathcal{B}_{SP\pm} \\ [10^{-4}] \end{array}$	$\begin{array}{c} \mathcal{B}_{LR+} \\ [10^{-4}] \end{array}$	$\begin{array}{c} \mathcal{B}_T \\ [10^{-4}] \end{array}$		
$\Lambda_c \to p$	0.0056	1.1	0.018	2.4	11.2		
$\Xi_c \to \Sigma^+$	0.0098	1.9	0.032	4.4	22.5		
$D^{\bar{0}} \rightarrow \pi^0$	-	[2.1]	0.024	[2.1]	[2.1]		
$D^+ o \pi^+$	-	10.5	0.123	8.5	10.2		
$D_s^+ \to K^+$	-	2.0	0.023	1.6	1.3		

▶ Obtain branching fractions $\mathcal{B}(h_c \to F + inv.) = \int_{q^2_{\min}_{\min}}^{q^2_{\max}} \mathrm{d}\mathcal{B}/\mathrm{d}q^2$

▶ $q_{\min}^2 = 0.34 \,\text{GeV}^2(0.66 \,\text{GeV}^2)$ for $D^+ \to \pi^+$ ($D_s^+ \to K^+$) to remove tree-level τ -background

		$\nu_{i,l}$	$_{\Sigma}$ and $ u_{c}$	i,R		 	
$h_c \to F$	$\begin{array}{c} \mathcal{B}_{SP-} \\ [10^{-4}] \end{array}$	$\begin{array}{c} \mathcal{B}_{SP+} \\ [10^{-4}] \end{array}$	$\begin{array}{c} \mathcal{B}_{SP\pm} \\ [10^{-4}] \end{array}$	$\begin{array}{c} \mathcal{B}_{LR+} \\ [10^{-4}] \end{array}$	$\begin{array}{c} \mathcal{B}_T \\ [10^{-4}] \end{array}$		
$\Lambda_c \to p$	0.0056	1.1	0.018	2.4	11.2		
$\Xi_c \to \Sigma^+$	0.0098	1.9	0.032	4.4	22.5		
$D^{ar{0}} ightarrow \pi^0$	-	[2.1]	0.024	[2.1]	[2.1]		
$D^+ \to \pi^+$	-	10.5	0.123	8.5	10.2		
$D_s^+ \to K^+$	-	2.0	0.023	1.6	1.3		

Tensor contributions are the least constrained ones

Scalar- and pseudoscalar contributions are constrained the strongest

▶ Obtain branching fractions
$$\mathcal{B}(h_c \to F + inv.) = \int_{q^2_{\min}}^{q^2_{\max}} \mathrm{d}\mathcal{B}/\mathrm{d}q^2$$

▶ $q_{\min}^2 = 0.34 \,\text{GeV}^2(0.66 \,\text{GeV}^2)$ for $D^+ \to \pi^+$ ($D_s^+ \to K^+$) to remove tree-level τ -background

		$\nu_{i,l}$	Light Z' and χ				
$h_c \to F$	\mathcal{B}_{SP-}	\mathcal{B}_{SP+}	$\mathcal{B}_{SP\pm}$	\mathcal{B}_{LR+}	\mathcal{B}_{T}	$\mathcal{B}_V^{Z'}$	$\mathcal{B}_{D}^{Z'}$
	$[10^{-4}]$	$[10^{-4}]$	$[10^{-4}]$	$[10^{-4}]$	$[10^{-4}]$	$[10^{-4}]$	$[10^{-4}]$
$\Lambda_c \to p$	0.0056	1.1	0.018	2.4	11.2	3.1	17.8
$\Xi_c \to \Sigma^+$	0.0098	1.9	0.032	4.4	22.5	5.4	32.2
$D^0 \to \pi^0$	-	[2.1]	0.024	[2.1]	[2.1]	[2.1]	[2.1]
$D^+ ightarrow \pi^+$	-	10.5	0.123	8.5	10.2	10.5	10.7
$D_s^+ \to K^+$	-	2.0	0.023	1.6	1.3	3.9	2.7

Tensor contributions are the least constrained ones

Scalar- and pseudoscalar contributions are constrained the strongest

▶ Obtain branching fractions
$$\mathcal{B}(h_c \to F + inv.) = \int_{q^2_{\min}}^{q^2_{\max}} \mathrm{d}\mathcal{B}/\mathrm{d}q^2$$

▶ $q_{\min}^2 = 0.34 \,\text{GeV}^2(0.66 \,\text{GeV}^2)$ for $D^+ \to \pi^+$ ($D_s^+ \to K^+$) to remove tree-level τ -background

		$ u_{i,l}$	$_{\scriptscriptstyle \Sigma}$ and $ u$	$_{i,R}$		Light Z' and $\chi \; SU(2)_L$ link Bause et al. 2021					
$h_c \to F$	$\frac{\overline{\mathcal{B}_{SP-}}}{[10^{-4}]}$	$\begin{array}{c} \mathcal{B}_{SP+} \\ [10^{-4}] \end{array}$	$\begin{array}{c} \mathcal{B}_{SP\pm} \\ [10^{-4}] \end{array}$	$\begin{array}{c} \mathcal{B}_{LR+} \\ [10^{-4}] \end{array}$	$\frac{\mathcal{B}_T}{[10^{-4}]}$	$\overline{ \mathcal{B}_V^{Z'} }_{[10^{-4}]}$	$\begin{array}{c} \mathcal{B}_D^{Z'} \\ [10^{-4}] \end{array}$	$\frac{\mathcal{B}_{\rm LU}}{[10^{-4}]}$	$\begin{array}{c} \mathcal{B}_{\mathrm{cLFC}} \\ [10^{-4}] \end{array}$	$\frac{\mathcal{B}_{\text{general}}}{[10^{-4}]}$	
$\Lambda_c \to p$	0.0056	1.1	0.018	2.4	11.2	3.1	17.8	0.018	0.11	0.39	
$\Xi_c \to \Sigma^+$	0.0098	1.9	0.032	4.4	22.5	5.4	32.2	0.036	0.21	0.76	
$D^{\bar{0}} \rightarrow \pi^0$	-	[2.1]	0.024	[2.1]	[2.1]	[2.1]	[2.1]	0.0061	0.035	0.13	
$D^+ ightarrow \pi^+$	-	10.5	0.123	8.5	10.2	10.5	10.7	0.025	0.14	0.52	
$D_s^+ \to K^+$	-	2.0	0.023	1.6	1.3	3.9	2.7	0.0046	0.26	0.096	

Tensor contributions are the least constrained ones

Scalar- and pseudoscalar contributions are constrained the strongest

 \blacktriangleright Upper limit \mathcal{B}_{LR+} is weaker than limits from $SU(2)_L$

 \Longrightarrow Now model with two-body decay missing energy signature

Fraction of ALPs, which escape detector of transverse radius $R_{max} = 2.8 \text{ m}$

$$F_T(\Gamma,m_a) = \int_0^{\frac{\pi}{2}} \sin\theta \mathrm{d}\theta \exp\left(-\frac{m_a \Gamma R_{\max}}{|p_{LAB}^T|}\right)$$

Meson decays constrain only vector couplings

$$\mathcal{B}(D^0 \to \pi^0 a) = F_T(\Gamma, m_a) \, a_V^{D^0 \to \pi^0}(m_a) \, \frac{|k_{12}^V|^2}{f^2}$$

For $\Gamma = 0$ the bound is nearly mass independent

 $\left|k_{12}^V\right|/f < 2.4 \cdot 10^{-7} \, \mathrm{GeV}^{-1}$

 $D^0 \to \pi^0 + inv. \quad {\rm Besill \ 2021}$

 $\mathcal{B}(D^0 \to \pi^0 \nu \bar{\nu}) < 2.1 \cdot 10^{-4} \ @ 90\% C.L.$

Bounds ALPs

 Baryon decays constrain vector and axial couplings at the same time

$$\begin{split} \mathcal{B}(\Lambda_c \rightarrow pa) &= \frac{\left|k_{12}^V\right|^2}{f^2} a_V^{\Lambda_c \rightarrow p}(m_a) \\ &+ \frac{\left|k_{12}^A\right|^2}{f^2} a_A^{\Lambda_c \rightarrow p}(m_a) \end{split}$$

- Axial coupling of ALPs in $c \rightarrow u$ is unconstrained by experiment
- ▶ Upper bound on $\mathcal{B}(\Lambda_c \rightarrow p + inv.)$ is predicted by bound on vector coupling
- Small dependence on the ALP mass m_a for k_{12}^V

Conclusion

- Invisible rare charm decays are null tests and probe NP uniquely in up-type sector
- Baryon decays allow to probe certain operators for the first time and are advantageous for others
- The differential branching ratio can distinguish different scenarios of NPs
 Scalar- and Pseudoscalar contributions that require additional RH neutrinos have steep slope near q² = 0
 - Z' contributions have resonance shape
 - **b** Bounds on certain operators types can already profit from a few q^2 bins
 - Relevant for two-body decay interpretation of invisible decays for models like ALPs
- There are exiting times ahead for charm and invisible decays!

In preparation

Appendix

- Bause, Rigo et al. (2021). "Rare charm $c \rightarrow u \nu \bar{\nu}$ dineutrino null tests for e^+e^- machines." In: *Phys. Rev. D* 103.1, p. 015033. DOI: 10.1103/PhysRevD.103.015033. arXiv: 2010.02225 [hep-ph].
- Bauer, Martin et al. (2021). "The Low-Energy Effective Theory of Axions and ALPS." In: JHEP 04, p. 063. DOI: 10.1007/JHEP04(2021)063. arXiv: 2012.12272 [hep-ph].
- Bolikim, M. et al. (2022). "Search for the decay $D^0 \to \pi^0 \nu \bar{\nu}$." In: *Phys. Rev. D* 105.7, p. L071102. DOI: 10.1103/PhysRevD.105.L071102. arXiv: 2112.14236 [hep-ex].
- Lubicz, V. et al. (2017). "Scalar and vector form factors of $D \rightarrow \pi(K)\ell\nu$ decays with $N_f = 2+1+1$ twisted fermions." In: *Phys. Rev. D* 96.5. [Erratum: Phys.Rev.D 99, 099902 (2019), Erratum: Phys.Rev.D 100, 079901 (2019)], p. 054514. DOI: 10.1103/PhysRevD. 96.054514. arXiv: 1706.03017 [hep-lat].
- Bazavov, Alexei et al. (2023). "D-meson semileptonic decays to pseudoscalars from four-flavor lattice QCD." In: *Phys. Rev. D* 107.9, p. 094516. DOI: 10.1103/PhysRevD. 107.094516. arXiv: 2212.12648 [hep-lat].

- $\label{eq:constraint} \fboxspace{-2.5} \fboxspace{-2.5} \fboxspace{-2.5} \vspace{-2.5} \rspace{-2.5} \rspace{$
- Golz, Marcel, Gudrun Hiller, and Tom Magorsch (2021). "Probing for new physics with rare charm baryon (Λ_c , Ξ_c , Ω_c) decays." In: *JHEP* 09, p. 208. DOI: 10.1007/JHEP09(2021)208. arXiv: 2107.13010 [hep-ph].
- Lubicz, V. et al. (2018). "Tensor form factor of $D \to \pi(K)\ell\nu$ and $D \to \pi(K)\ell\ell$ decays with $N_f = 2 + 1 + 1$ twisted-mass fermions." In: *Phys. Rev. D* 98.1, p. 014516. DOI: 10.1103/PhysRevD.98.014516. arXiv: 1803.04807 [hep-lat].

Numerical evaluation of form factors

- ▶ The numerical results of the $\Lambda_c \rightarrow p$ form factors are given in Lattice QCD Meinel 2018
- z-Expansion to interpolate for the whole kinematic q² range

$$f(q^2) = \frac{1}{1-q^2/(m_{\rm pole}^f)^2} \sum_{n=0}^k a_n$$

Form factors for other decays are related via flavor symmetries Golz, Hiller, and Magorsch 2021

$$f_{\Lambda_c \to p} = f_{\Xi_c^+ \to \varSigma^+} = \sqrt{2} f_{\Xi_c^0 \to \varSigma^0} = \sqrt{6} f_{\Xi_c^0 \to \Lambda^0}$$

- The numerical results of the $D^0 \rightarrow \pi^0$ form factors are given in Lattice QCD Lubicz et al. 2017,Lubicz et al. 2018,Bazavov et al. 2023
- z-Expansion to interpolate for the whole kinematic q² range

$$f(q^2) = \frac{1}{1-q^2/(m_{\rm pole}^f)^2} \sum_{n=0}^k a_n$$

Differential branching fraction $D^0 o \pi^0 + i n v.$

