Rare $D^0 \rightarrow \pi^+ \pi^- \ell^+ \ell^-$ decays: Contribution of S-wave dynamics in the SM and sensitivity to New Physics *based on 2308.XXXXX*

Eleftheria Solomonidi

In collaboration with Svjetlana Fajfer & Luiz Vale Silva

CHARM 2023, July 18, Siegen

Introduction

- Rare decays could provide the ground for discovering New Physics effects: SM at loop level
- Rich history: $K \rightarrow \mu \mu$, *B* Physics
- Many NP tests can be constructed
- Some tests theoretically very clean (e.g. LFU tests)
- Others sensitive to hadronic effects require careful QCD implementation (e.g. in P'_5)
- Rare decays with charm provide complementary tests from the up-type sector

See e.g. Burdman et al., Fajfer et al., Bharucha et al.,...

Rare processes with charm

New LHCb results on $D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$ and $D^0 \rightarrow K^+K^-\mu^+\mu^-$ [PRL 128(22):221801] • 5D phase space: q^2 (leptons), p^2 (pions), $\theta_h, \theta_\ell, \phi$ \Rightarrow 5 1D plots of differential decay rates (LHCb data for q^2, p^2) -og(Events) $\overrightarrow{n}_{\mu\mu}$ h^+ $\sqrt{a^2}$

• Angular observables: different integrations $\sum_{i} c_{i} \int_{\theta_{\ell,i}}^{\theta_{\ell,i+1}} d \cos \theta_{\ell} \sum_{j} c'_{j} \int_{\phi_{i}}^{\phi_{i+1}} d\phi d^{5} \Gamma \text{ (e.g. } A_{FB} \text{ is a null test!)}$

• CP-asymmetric ones: further tests (not the focus of the talk)

Rare processes with charm

• 5D phase space: q^2 (leptons), p^2 (pions), $\theta_h, \theta_\ell, \phi$ \Rightarrow 5 1D plots of differential decay rates (LHCb data for q^2, p^2)

noercanny	is statistical an	a the second syste	anatic.					
$m(\mu^+\mu^-)$ [MeV/c ²]	(S_3) [%]	$\langle S_3 \rangle$ [%]	$\langle S_4 \rangle$ [%]	(S_3) [%]	$\langle S_6 \rangle$ [%]	(S_7) [%]	$\langle S_8 \rangle$ [%]	(S_0) [%]
				$D^0 \rightarrow \pi^+ \pi^- a^+$	-			
< 525 525-565	$5 \pm 14 \pm 4$	$-6 \pm 16 \pm 2$	$21 \pm 16 \pm 2$	$-20 \pm 14 \pm 1$	$-14 \pm 14 \pm 1$	$8 \pm 14 \pm 1$	$16 \pm 17 \pm 1$	$26 \pm 16 \pm 2$
565-780	$-2.4 \pm 4.1 \pm 1.1$	$-9.1 \pm 4.8 \pm 1.5$	$3.7 \pm 4.9 \pm 1.3$	$-3.0 \pm 4.1 \pm 0$.8 2.5±4.1±0)	6 0.8±4.1±1.0	$12.9 \pm 4.9 \pm 1.0$	$-0.1 \pm 4.9 \pm 0.5$
780-950	$-10.7 \pm 5.8 \pm 1.1$	$7.7 \pm 6.9 \pm 1.0$	$-4.7 \pm 6.9 \pm 1.3$	5 4.7±5.8±0	7 9.0±5.8±0.	7 -4.7±5.8±1.0	1.4±6.9±0.7	$-4.7 \pm 6.8 \pm 0.8$
950-1020	$-2.0 \pm 3.7 \pm 1.6$	$-17.4 \pm 4.3 \pm 1.5$	$-9.9 \pm 4.3 \pm 3$	5 2.0 ± 3.7 ± 0	.8 6.5±3.7±1.	$4 -3.6 \pm 3.7 \pm 1.2$	$12.6 \pm 4.3 \pm 0.9$	$16.9 \pm 4.3 \pm 1.0$
1020-1100	$1.7 \pm 3.4 \pm 1.5$	$-15.3 \pm 4.0 \pm 1.7$	$-18.3 \pm 4.0 \pm 23$	$-6.9 \pm 3.4 \pm 1$	2 1.1±3.4±0;	8 2.7 ± 3.4 ± 2.0	$0.7 \pm 4.1 \pm 0.9$	$7.8 \pm 4.0 \pm 1.7$
> 1100	-		-	-	-	-	-	
Full range	$-3.4 \pm 2.1 \pm 1.0$	$-10.4 \pm 2.5 \pm 0.9$	$-4.6 \pm 2.5 \pm 1.0$	$5 -2.9 \pm 2.1 \pm 0$.6 3.7 ± 2.1 ± 0.3	$5 -0.6 \pm 2.1 \pm 0.9$	$3.8 \pm 2.5 \pm 0.5$	$5.1 \pm 2.5 \pm 0.1$
ncertainty	is statistical and	d the second syst	ematic.	(,,		
$m(\mu^+\mu^-)$ [MeV/c ²]	$\langle A_2 \rangle$ [%]	$\langle A_3 \rangle$ [%]	$\langle A_{4}\rangle$ [%]	(A_5) [%]	(A_4) [%]	$\langle A_2 \rangle$ [%]	$\langle A_{k} \rangle$ [%]	$\langle A_0 \rangle [\%]$
				$D^0 \rightarrow \pi^+\pi^-\mu^+$	-			
< 525	$-10 \pm 14 \pm 2$	$2 \pm 16 \pm 1$	$-7 \pm 16 \pm 2$	$16 \pm 14 \pm 1$	$0 \pm 14 \pm 1$	$-10 \pm 14 \pm 2$	$3 \pm 17 \pm 2$	$-25 \pm 16 \pm 2$
525-565	-	-	-	-	-	-	-	-
565 - 780	$-1.1 \pm 4.1 \pm 1.9$	$5.7 \pm 4.8 \pm 0.7$	$0.6 \pm 4.9 \pm 0.7$	$-3.0 \pm 4.1 \pm 1.1$	$-4.8 \pm 4.1 \pm 1.0$	$-3.5 \pm 4.1 \pm 1.0$	$-1.8 \pm 4.9 \pm 1.2$	$1.6 \pm 4.9 \pm 1.1$
780-950	$-7.7 \pm 5.8 \pm 0.6$	$3.9 \pm 6.9 \pm 0.8$	$1.2 \pm 6.9 \pm 0.7$	$-3.3 \pm 5.8 \pm 1.0$	$0.4 \pm 5.8 \pm 1.0$	$-2.6 \pm 5.8 \pm 0.6$	$-5.1 \pm 6.9 \pm 1.5$	$-2.9 \pm 6.8 \pm 1.0$
950-1020	$2.3 \pm 3.7 \pm 0.7$	$-2.2 \pm 4.3 \pm 2.1$	$7.6 \pm 4.3 \pm 0.9$	$-3.6 \pm 3.7 \pm 1.2$	$4.5 \pm 3.7 \pm 1.1$	$3.5 \pm 3.7 \pm 0.9$	$2.7 \pm 4.3 \pm 1.3$	$1.4 \pm 4.3 \pm 1.2$
1020-1100	$-4.8 \pm 3.4 \pm 0.9$	$-2.6 \pm 4.0 \pm 1.2$	$-2.4 \pm 4.0 \pm 1.0$	$-2.3 \pm 3.4 \pm 1.2$	$3.2 \pm 3.4 \pm 1.1$	$-1.3 \pm 3.4 \pm 0.8$	$5.1 \pm 4.1 \pm -1.3$	$-5.9 \pm 4.0 \pm 1.8$
> 1100	-		-	-	-	-	-	
T1-10	0.0110.7	00105105	1.0.1.07.1.07	17101100	07101100	17101100	00102110	0.1 1.0 5 1.0 0

- Angular observables: different integrations $\sum_{i} c_{i} \int_{\theta_{s}}^{\theta_{\ell,i+1}} d\cos\theta_{\ell} \sum_{i} c_{i}' \int_{\phi_{i}}^{\phi_{i+1}} d\phi d^{5} \Gamma \text{ (e.g. } A_{FB} \text{ is a null test!)}$
- CP-asymmetric ones: further tests (not the focus of the talk)

What is interesting about rare charm decays?

 $\overset{P^{0}}{\overset{F^{*}}}{\overset{F^{*}}{\overset{F^{*}}{\overset{F^{*}}}{\overset{F^{*}}}{\overset{F^{*}}}{\overset{F^{*}}}}}{\overset{F^{*}}}}}$

- $\begin{array}{lll} Q_1^d = (\overline{d}c)_{V-A}(\overline{u}d)_{V-A} \,, & & Q_7 = -\frac{gem}{8\pi^2} \, m_c \overline{u} \sigma_{\mu\nu} (1+\gamma_5) F^{\mu\nu} c \,, & \\ Q_2^d = (\overline{u}c)_{V-A}(\overline{d}d)_{V-A} \,, & & Q_9 = \frac{\alpha_{em}}{2\pi} (\overline{u} \gamma_{\mu} (1-\gamma_5) c) (\overline{\ell} \gamma^{\mu} \ell) \,, \\ Q_2^s = (\overline{u}c)_{V-A}(\overline{s}s)_{V-A} \,, & & Q_{10} = \frac{\alpha_{em}}{2\pi} (\overline{u} \gamma_{\mu} (1-\gamma_5) c) (\overline{\ell} \gamma^{\mu} \gamma_5 \ell) \,, & \\ \end{array}$
- Strong GIM suppression $\Rightarrow C_{9,10,7}$ very small! ($\neq B$ Physics: $|C_9|, |C_{10}| \approx 4.2$)
- Result:
 - (+) Some observables vanish in the SM ("null tests") [de Boer, Hiller Phys.Rev.D 98 (2018) 3]

 - **③** Typical picture: interplay between SM and potential NP contributions
 - To probe NP Wilson coefficients of e.g. SMEFT, we need good control of SM contributions

Framework

Rare *D* decays: model

Rare D decays: model

$$\begin{split} &\langle \pi^{+}\pi^{-}\ell^{+}\ell^{-}|S|D^{0}\rangle = \langle \pi^{+}\pi^{-}\ell^{+}\ell^{-}| \\ &\int d^{4}x \, d^{4}w \, d^{4}y \, d^{4}z \\ &\sum_{\mathscr{R},\mathscr{V}} T\{\mathscr{H}_{em}^{lept}(z) \, \mathscr{H}_{\mathscr{V}\gamma}(y) \, \mathscr{H}_{\mathscr{R}\pi\pi}(w) \, \mathscr{H}_{eff}(x)\} |D^{0}\rangle \end{split}$$

Rare *D* decays: model

New: we include the scalar resonance $f_0(500) = \sigma$ in $D^0 \rightarrow \sigma \rightarrow \pi^+\pi^-$ (observed in $D \rightarrow \pi\pi e\nu_e$ [BESIII], evidence in $D \rightarrow 4\pi$ [d'Argent+, CLEO data]) Instead of Breit-Wigner, Bugg's parameterization [Bugg, Phys.Lett.B 572 (2003) 1-7]: includes rescattering effects

Resonances

Factorisation-inspired

(

Starting point: Cappiello, Cata, d'Ambrosio, JHEP 04 (2013) 135

$$Q_2^d = (\overline{u}c)_{V-A}(\overline{d}d)_{V-A} \qquad \qquad \rho, \omega, \sigma : \{u, d\}, \quad \phi : s \text{ Zweig rule}$$
$$Q_2^s = (\overline{u}c)_{V-A}(\overline{s}s)_{V-A}$$

Tree -type 1 ('W')	Tree -type 2 ('J')	Annihilation
$egin{array}{ll} D o R o \pi \pi \ 0 o V o \ell \ell \end{array}$	$D \to V \to \ell \ell \\ 0 \to R \to \pi \pi$	$egin{aligned} D & o 0 \ 0 & o R(o \pi\pi) V(o \ell\ell) \end{aligned}$

- $\bullet\,$ J-type important: same CKM powers as W-type, unflavored final mesons (# B-Physics)
- Correct factorization with the introduction of strong phases and 'fudge factors'
- Annihilation: only ho
 ho, $\sigma
 ho$ \sim m_d , partially reabsorbed in free parameters

Eleftheria Solomonidi-IFIC/Valencia

Rare $D \rightarrow \pi \pi \ell \ell$ decays

Angular observables I

Defined e.g. as

$$I_{2} = \int_{-\pi}^{\pi} d\phi \left[\int_{-1}^{-0.5} d\cos\theta_{\ell} + \int_{0.5}^{1} d\cos\theta_{\ell} - \int_{-0.5}^{0.5} d\cos\theta_{\ell} \right] \frac{d^{5}\Gamma}{dp^{2}dq^{2}d\Omega}$$

results in

$$I_{i} = f(\underbrace{C_{9}^{eff:P}(q^{2}), C_{9}^{eff:S}(q^{2})}_{\text{SM}, \text{Pc}, \text{and Sc, wave}}; \underbrace{C_{9}^{NP}, C_{10}^{NP}, C_{9}^{'NP}, C_{10}^{'NP}}_{\text{NP}, \text{only}}) \times (\text{Long-distance part})$$

Null tests

 I_5, I_6 (Forward-backward asymmetry), $I_7 \stackrel{SM}{=} 0$

Further integration over θ_h

$$\langle I_i \rangle_{-} \equiv \left[\int_0^{+1} d \cos \theta_{P_1} - \int_{-1}^0 d \cos \theta_{P_1} \right] I_i , \quad \langle I_i \rangle_{+} \equiv \int_{-1}^{+1} d \cos \theta_{P_1} I_i$$

results in observables that either

- depend on the P-wave only: $\langle I_3 \rangle_+, \langle I_6 \rangle_+, \langle I_9 \rangle_+, \langle I_4 \rangle_-, \langle I_5 \rangle_-, \langle I_7 \rangle_-, \langle I_8 \rangle_-$
- depend on the P-wave and the S-wave but not their interference: $\langle I_1
 angle_+$, $\langle I_2
 angle_+$
- depend on the interference of S and P wave (rest of the observables)

CP-averaged ones $\langle S_i \rangle$; no CP violation $\rightarrow \langle S_i \rangle = \langle I_i \rangle_{\pm}$ (q^2 -binned) Eleftheria Solomonidi-IFIC/Valencia

Framework 10 / 16

Results (preliminary)

Differential mass distributions: p^2 , q^2

- (not a semileptonic one) (not a semileptonic one) Inclusion of σ is paramount! $\chi^2_{min;w/o \sigma} - \chi^2_{min} = (8.6)^2$
- σ contributes to the diff. decay rate by 10 - 35% depending on q^2 (not visible)
- q^2 -binned observables l_2, l_3 reproduced well ; S-wave contributes more than 30% to l_2
- *I*₄ not reproducible with current framework

Eleftheria Solomonidi-IFIC/Valencia

Rare $D \rightarrow \pi \pi \ell \ell$ decays

Tests for S-wave: $d\Gamma/d\cos\theta_h$, angular observables

 $\frac{d\Gamma}{d\cos\theta_h} \propto |\mathscr{F}_S|^2 + |\mathscr{F}_{0,P}|^2\cos^2\theta_h + (|\mathscr{F}_{\parallel}|^2 + |\mathscr{F}_{\perp}|^2)\sin^2\theta_h + \operatorname{Re}\{\mathscr{F}_S\mathscr{F}_{0,P}^*\}\cos\theta_h$

Integration by p^2 regions would further highlight the presence of σ / help determine strong dynamics

Observables $\langle \mathit{I}_2\rangle_-,\,\langle \mathit{I}_4\rangle_+,\,\langle \mathit{I}_8\rangle_+$ calculated to be at a measurable level

Eleftheria Solomonidi-IFIC/Valencia

Null tests

 I_5, I_6 (Forward-backward asymmetry), $I_7 \stackrel{SM}{=} 0$

Examine the case of $C_{10} \neq 0$, $C_9, C_9', C_{10}' = 0$

- NP observables sensitive to P-wave only: $\langle {\it I}_5\rangle_-, \langle {\it I}_6\rangle_+, \langle {\it I}_7\rangle_-$
 - (1) $\langle I_5 \rangle_-, \langle I_6 \rangle_+$ up to a few % for current upper bounds on C_{10}
 - ⟨*I*₇⟩₋ ≈ 0 very suppressed with the current long-distance parameterization (same for ⟨*I*₈⟩₋, ⟨*I*₉⟩₊)
- NP observables with S-wave:
 - **1** $\langle I_5 \rangle_+$ (S-P interf.) $\approx \mathcal{O}(\langle I_5 \rangle_-)$ (P-wave)
 - 2 $\langle h_7 \rangle_+$ (S-P interf.) at the same level as $\langle h_5 \rangle_+, >> \langle h_7 \rangle_-$

Conclusions

Summary

- $\bullet\,$ Rare D decays are dominated by long-distance QCD dynamics; focus on $D^0\to\pi^+\pi^-\mu^+\mu^-$
- Factorisation-inspired + phases + room for magnitude adjustments
- New: inclusion of S-wave dynamics through the $\sigma = f_0(500)$ resonance, encoding rescattering in the relevant energy range

Results:

- Predictions for $d\Gamma/dp^2$, dq^2 (dihadron/dilepton mass) significantly improved; good agreement with data for most observables; determination of relative strong phases
- S-wave presence very prominent in decay rate over pion angle; accessible observables can probe it further
- S-wave inclusion gives access to complementary NP tests
- Some angular observables not correctly reproduced, regardless of S-wave presence; refinement (e.g. cascade decays?) needed before drawing conclusions regarding NP

Summary

- $\bullet\,$ Rare D decays are dominated by long-distance QCD dynamics; focus on $D^0\to\pi^+\pi^-\mu^+\mu^-$
- $\bullet\,$ Factorisation-inspired $+\,$ phases $+\,$ room for magnitude adjustments
- New: inclusion of S-wave dynamics through the $\sigma = f_0(500)$ resonance, encoding rescattering in the relevant energy range

Results:

- Predictions for $d\Gamma/dp^2$, dq^2 (dihadron/dilepton mass) significantly improved; good agreement with data for most observables; determination of relative strong phases
- S-wave presence very prominent in decay rate over pion angle; accessible observables can probe it further
- S-wave inclusion gives access to complementary NP tests
- Some angular observables not correctly reproduced, regardless of S-wave presence; refinement (e.g. cascade decays?) needed before drawing conclusions regarding NP

Thank you!

Angular observables - definition

$$\begin{split} I_{2} &= \int_{-\pi}^{\pi} d\phi \left[\int_{-1}^{-0.5} d\cos\theta_{\mu} + \int_{0.5}^{1} d\cos\theta_{\mu} - \int_{-0.5}^{0.5} d\cos\theta_{\mu} \right] \frac{d^{5}\Gamma}{dq^{2} dp^{2} d\vec{\Omega}} \,, \\ I_{3} &= \frac{3\pi}{8} \left[\int_{-\pi}^{-\frac{3\pi}{4}} d\phi + \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} d\phi + \int_{\frac{3\pi}{4}}^{\pi} d\phi - \int_{-\frac{3\pi}{4}}^{-\frac{\pi}{4}} d\phi \right] \int_{-1}^{1} d\cos\theta_{\mu} \frac{d^{5}\Gamma}{dq^{2} dp^{2} d\vec{\Omega}} \,, \\ I_{4} &= \frac{3\pi}{8} \left[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\phi - \int_{-\pi}^{-\frac{\pi}{2}} d\phi - \int_{\frac{\pi}{2}}^{\pi} d\phi \right] \left[\int_{0}^{1} d\cos\theta_{\mu} - \int_{-1}^{0} d\cos\theta_{\mu} \right] \frac{d^{5}\Gamma}{dq^{2} dp^{2} d\vec{\Omega}} \,, \\ I_{5} &= \left[\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\phi - \int_{-\pi}^{-\frac{\pi}{2}} d\phi - \int_{\frac{\pi}{2}}^{\pi} d\phi \right] \int_{-1}^{1} d\cos\theta_{\mu} \frac{d^{5}\Gamma}{dq^{2} dp^{2} d\vec{\Omega}} \,, \\ I_{6} &= \int_{-\pi}^{\pi} d\phi \left[\int_{0}^{1} d\cos\theta_{\mu} - \int_{-1}^{0} d\cos\theta_{\mu} \right] \frac{d^{5}\Gamma}{dq^{2} dp^{2} d\vec{\Omega}} \,, \\ I_{7} &= \left[\int_{0}^{\pi} d\phi - \int_{-\pi}^{0} d\phi \right] \int_{-1}^{1} d\cos\theta_{\mu} \frac{d^{5}\Gamma}{dq^{2} dp^{2} d\vec{\Omega}} \,, \\ I_{8} &= \frac{3\pi}{8} \left[\int_{0}^{\pi} d\phi - \int_{-\pi}^{0} d\phi \right] \left[\int_{0}^{1} d\cos\theta_{\mu} - \int_{-1}^{0} d\cos\theta_{\mu} \right] \frac{d^{5}\Gamma}{dq^{2} dp^{2} d\vec{\Omega}} \,, \\ I_{9} &= \frac{3\pi}{8} \left[\int_{-\pi}^{-\frac{\pi}{2}} d\phi + \int_{0}^{\frac{\pi}{2}} d\phi - \int_{-\frac{\pi}{2}}^{0} d\phi - \int_{-\pi}^{0} d\phi d\phi \,. \end{bmatrix} \left[\int_{-1}^{1} d\cos\theta_{\mu} - \int_{-1}^{0} d\cos\theta_{\mu} \right] \frac{d^{5}\Gamma}{dq^{2} dp^{2} d\vec{\Omega}} \,, \\ I_{9} &= \frac{3\pi}{8} \left[\int_{-\pi}^{-\frac{\pi}{2}} d\phi + \int_{0}^{\frac{\pi}{2}} d\phi - \int_{-\frac{\pi}{2}}^{0} d\phi - \int_{-\frac{\pi}{2}}^{0} d\phi - \int_{-\pi}^{0} d\phi d\phi \,. \end{bmatrix} \left[\int_{-\frac{\pi}{2}}^{1} d\phi - \int_{-\frac{\pi}{2}}^{0} d\phi \,. \end{bmatrix} \left[\int_{-1}^{1} d\cos\theta_{\mu} \,. \right] \frac{d^{5}\Gamma}{dq^{2} dp^{2} d\vec{\Omega}} \,. \end{aligned} \right]$$

Numerical results - comparison to experiment

$\sqrt{q^2}$ region	Γ[10 ⁻⁵]	$\frac{\Gamma_{\sigma}}{\Gamma}(\%)$	$(\int dp^2 I_2)$			
r ^(low)	0.08	17	26			
$r^{(\eta)}$	0.03	15	28			
$r^{(\rho:inf)}$	1.09	32	61			
$r^{(\rho: \text{sup})}$	0.59	37	74			
$r^{(\phi:inf)}$	1.00	27	79			
$r^{(\phi: \text{sup})}$	0.85	22	75			
r ^(high)	0.01	13		62		
$\sqrt{q^2}$ region	$\langle S_2 \rangle (\%)$	$\langle S_3 \rangle (\%)$	$\langle S_4 \rangle (\%)$		(S ₂) [%]	(S4) [%]
r ^(low)	-15	-2	15	(02/ [/0]	(~3) [70]	(64) [70]
$r^{(\eta)}$	-17	-4	23			
$r^{(\rho:inf)}$	-17	-6	21	$5 \pm 14 \pm 4$	$-6 \pm 16 \pm 2$	$21\pm16\pm2$
$r^{(\rho: \text{sup})}$	-17	-7	20	$-2.4 \pm 4.1 \pm 1.1$	$-9.1 \pm 4.8 \pm 1.5$	$3.7 \pm 4.9 \pm 1.3$
$r^{(\phi:inf)}$	-12	-12	25	$-10.7 \pm 5.8 \pm 1.1$	$7.7 \pm 6.9 \pm 1.0$	$-4.7 \pm 6.9 \pm 1.5$
$r^{(\phi: \text{sup})}$	-10	-13	27	$-2.0 \pm 3.7 \pm 1.6$ $1.7 \pm 3.4 \pm 1.5$	$-17.4 \pm 4.3 \pm 1.5$ $-15.3 \pm 4.0 \pm 1.7$	$-9.9 \pm 4.3 \pm 3.5$ $-18.3 \pm 4.0 \pm 2.5$
r ^(high)	-11	-23	44	. –		-

New Physics observables

$\sqrt{q^2}$ region	Γ (SM+NP) (10 ⁻⁵)	$\langle I_5 \rangle_{(+,S)}(\%)$	$\langle I_5 \rangle_{(-,P)}(\%)$	$\langle I_6 \rangle_{(+,P)}(\%)$	$\langle I_7 \rangle_{(+,S)}(\%)$
0.212-0.525	$0.08 + 0.09 ilde{C}_{10} ^2$	2.1	-2.4	-1.8	-2.1
0.525-0.565	$0.03 + 0.02 ilde{C}_{10} ^2$	2.2	-2.6	-2.6	-2.0
0.565-0.78	$1.09 + 0.11 ilde{C}_{10} ^2$	0.7	0.3	0.4	-0.9
0.78- 0.95	$0.59 + 0.10 ilde{C}_{10} ^2$	-0.2	2.0	2.7	-0
0.95-1.02	$1.00 + 0.04 ilde{C}_{10} ^2$	0.3	-0.3	-0.5	0.4
1.02-1.1	$0.85 + 0.03 ilde{C}_{10} ^2$	0.02	0.5	0.9	-0.1
1.1-1.59	$0.01 + 0.03 ilde{C}_{10} ^2$	-1.8	4.6	8.3	-0.2

Angular observables given at $\tilde{C}_{10} = 0.43$

For a certain choice of relative phases:

$\sqrt{q^2}$ region (GeV)	$\langle I_2 \rangle_{(+,S)}(\%)$	$\langle I_4 \rangle_{(+,S)}(\%)$	$\langle I_8 \rangle_{(+,S)}(\%)$
0.212-0.525	10	-3	2
0.525-0.565	11	-4	3
0.565-0.78	-1	2	4
0.78- 0.95	-10	6	2
0.95-1.02	14	-9	1
1.02-1.1	-5	3	4
1.1-1.59	-20	15	2

CMD-2

