Resummation and Renormalization of Kinematical Effects in χ_c and χ_b Hadroproduction

Hee Sok Chung Korea University

Based on <u>JHEP07(2023)007</u> <u>arXiv:2303.17240</u> [hep-ph]

11th International Workshop on Charm Physics (CHARM 2023) July 20, 2023

P-wave Production in NRQCD

- *P*-wave (χ_c, χ_b) production at LO in v: $\sigma[\chi_{QJ}(P)] = (2J+1) \left(c_{3P_J^{[1]}}(P) \langle \mathcal{O}^{\chi_{Q0}}({}^{3}P_0^{[1]}) \rangle + c_{3S_1^{[8]}}(P) \langle \mathcal{O}^{\chi_{Q0}}({}^{3}S_1^{[8]}) \rangle \right)$ (Q=c or b)Bodwin, Braaten, Lepage, PRD51, 1125 (1995)
- $c_{3P_{J}^{[1]}}(P)$ and $c_{3S_{1}^{[8]}}(P)$ describe perturbative production of $Q\overline{Q}$. • $d_{3P_{J}^{[1]}}(P)$ and $c_{3S_{1}^{[8]}}(P)$ describe perturbative production of $Q\overline{Q}$. Matrix elements (ME) $\langle \mathcal{O}^{\chi_{Q0}}({}^{3}P_{0}^{[1]})\rangle$ and $\langle \mathcal{O}^{\chi_{Q0}}({}^{3}S_{1}^{[8]})\rangle$ describe nonperturbative evolution of $Q\overline{Q}$ into quarkonium.
- Color-octet matrix elements are obtained from fits to data, which depend on normalization and p_T dependence of cross section.
- p_T shapes of cross sections come from $c_{3P_J^{[1]}}(P)$ and $c_{3S_1^{[8]}}(P)$. Fixed-order calculations are known to have difficulty describing cross sections over a wide range of p_T .

P-wave Production in NRQCD

- *P*-wave (χ_c, χ_b) production at LO in v: $\sigma[\chi_{QJ}(P)] = (2J+1) \left(c_{3P_J^{[1]}}(P) \langle \mathcal{O}^{\chi_{Q0}}({}^{3}P_0^{[1]}) \rangle + c_{3S_1^{[8]}}(P) \langle \mathcal{O}^{\chi_{Q0}}({}^{3}S_1^{[8]}) \rangle \right)$
- $\langle \mathcal{O}^{\chi_{Q0}}({}^{3}P_{0}^{[1]}) \rangle$: color-singlet $Q\overline{Q}$ evolve into χ_{Q} (with or without soft radiation) $\langle \mathcal{O}^{\chi_{Q0}}({}^{3}S_{1}^{[8]}) \rangle$: color-octet $Q\overline{Q}$ evolve into χ_{Q} by soft radiation.
- Color-octet $Q\overline{Q}$ can also evolve into color-singlet $Q\overline{Q}$ by soft radiation before evolving into χ_Q .

Two channels mix by soft gluon emission due to renormalization: $\left(\frac{d}{d\log\Lambda}c_{{}^{3}P_{J}^{[1]}}(P)\right)\langle\mathcal{O}^{\chi_{Q0}}({}^{3}P_{0}^{[1]})\rangle+c_{{}^{3}S_{1}^{[8]}}(P)\left(\frac{d}{d\log\Lambda}\langle\mathcal{O}^{\chi_{Q0}}({}^{3}S_{1}^{[8]})\rangle\right)=0$

scale dependence of short-distance coefficient scale dependence of renormalized color-octet ME

• Same form of mixing happens for S-wave quarkonium production (ψ , Υ) between color-octet ${}^{3}P_{J}$ and ${}^{3}S_{1}$ states

CHARM 2023

vanishes

for $l > l_{\max}$

Mixing in *P*-wave Production

• Mixing in dimensional regularization $d=4-2 \epsilon$:

 Gluon momentum *l*>0 is included in the perturbative short-distance coefficient, while only *l*=0 is included in the nonperturbative ME.
 However, nonperturbative soft gluons can have nonzero momentum.

Production Kinematics

- Nonzero soft gluon momentum implies that quarkonium momentum is smaller than $Q\overline{Q}$ momentum
- In large- p_T hadroproduction, $|P_{Q\bar{Q}}| \lesssim x_1 x_2 \sqrt{s}/2$ Cross section is sensitive to small changes in Bjorken x. $Q\bar{Q}$ cross section is singular at maximum P ($l_{soft}=0$). Hence, quarkonium cross section can be sensitive to soft gluon momentum.

Production Kinematics

Soft radiation is "soft (~mv)" in the quarkonium rest frame.
 Need to boost from quarkonium rest frame to CM frame.

 Soft radiation has no preferred direction in the P=0 rest frame, but after a large boost (P>m_χ) the only relevant direction of soft radiation is *lightlike* and *anti-parallel* to P. *This effect can be resummed!*

Shape Functions

 Schematic form of lowest-dimensional NRQCD matrix elements, defined in quarkonium rest frame:

$$\mathcal{O}^{\chi_Q}(\Gamma)\rangle = \langle \chi^{\dagger} \Gamma \psi \mathcal{P}_{\chi_Q} \psi^{\dagger} \Gamma \chi$$

some combination of Pauli and color matrices, covariant derivatives

• We can have operator matrix elements that read off the $Q\bar{Q}$ momentum in a specific direction l given by

 $\langle \chi^{\dagger} \Gamma \psi \mathcal{P}_{\chi_Q} (l \cdot D)^n \psi^{\dagger} \Gamma \chi \rangle$

These matrix elements are generated by the "shape function"

$$\mathcal{S}_{\Gamma}^{\chi_Q}(l_+) = \langle \chi^{\dagger} \Gamma \psi \mathcal{P}_{\chi_Q} \delta(l_+ - iD_+) \psi^{\dagger} \Gamma \chi \rangle$$

• In practice, we only need color-octet shape functions, because due to vacuum-saturation approximation, color-singlet shape functions are trivial : $S_{\Gamma_{\text{singlet}}}^{\chi_Q}(l_+) = \langle \mathcal{O}^{\chi_Q}(\Gamma_{\text{singlet}}) \rangle \delta(l_+)$

Shape Function Formalism

• NRQCD formalism :

 $\sigma[\chi_{QJ}(P)] = (2J+1) \left(c_{{}^{3}P_{J}^{[1]}}(P) \langle \mathcal{O}^{\chi_{Q0}}({}^{3}P_{0}^{[1]}) \rangle + c_{{}^{3}S_{1}^{[8]}}(P) \langle \mathcal{O}^{\chi_{Q0}}({}^{3}S_{1}^{[8]}) \rangle \right)$

• Shape function formalism (NRQCD with kinematical corrections) :

$$\begin{split} \sigma[\chi_{QJ}(P)] &= (2J+1) \Big(s_{3P_{J}^{[1]}}(P) \langle \mathcal{O}^{\chi_{Q0}}(^{3}P_{0}^{[1]}) \rangle &\stackrel{l=\text{momentum lost}}{\to} \\ &+ \int_{0}^{\infty} dl_{+} s_{3S_{1}^{[8]}}(P+l) \mathcal{S}_{3S_{1}^{[8]}}^{\chi_{Q0}}(l_{+}) \Big) \\ \bullet \text{ Formally } \int_{0}^{\infty} dl_{+} \mathcal{S}_{3S_{1}^{[8]}}^{\chi_{Q0}}(l_{+}) &= \langle \mathcal{O}^{\chi_{Q0}}(^{3}S_{1}^{[8]}) \rangle \text{ ,} \end{split}$$

but both sides are UV divergent and require renormalization.

• Knowledge of the nonperturbative shape function $\mathcal{S}_{{}^{3}\mathcal{S}_{1}^{[8]}}^{\chi_{Q0}}(l_{+})$ needed to compute cross sections. <u>Beneke, Rothstein, Wise, PLB408 (1997) 373</u> <u>Fleming, Leibovich, Mehen, PRD68, 094011 (2003)</u> CHARM 2023

Renormalization

• Renormalization of color-octet matrix element

• Normalization of the shape function must reproduce this integral. This gives the asymptotic behavior at large l_+

$$\mathcal{S}_{{}^{3}S_{1}^{[8]}}^{\chi_{Q0}}(l_{+})\Big|_{\text{asy},\,d=4} = \langle \mathcal{O}^{\chi_{Q0}}({}^{3}P_{0}^{[1]})\rangle \times \frac{4\alpha_{s}C_{F}}{3N_{c}\pi m^{2}}\frac{1}{l_{+}}$$

Nonperturbative Shape Function

• Asymptotic behavior from renormalization:

$$\frac{d}{d\log\Lambda} \int_0^{\Lambda} dl_+ \mathcal{S}_{{}^{3}S_1^{[8]}}^{\chi_{Q0}}(l_+) = \frac{d}{d\log\Lambda} \langle \mathcal{O}^{\chi_{Q0}}({}^{3}S_1^{[8]})\rangle^{(\Lambda)}|_{\text{renormalized}}$$

- Nonperturbative normalization must be *IR finite*: $\int_{0}^{\infty} dl_{+} S_{3S_{1}^{[8]}}^{\chi_{Q0}}(l_{+}) = \langle \mathcal{O}^{\chi_{Q0}}(^{3}S_{1}^{[8]}) \rangle|_{\text{bare}}$
- Form of nonperturbative shape function is strongly constrained from *renormalization* and *IR finiteness*.

• $l_+ \rightarrow 0$ behavior is *model dependent*.

Corrections to Cross Section

 P-wave short-distance coefficients have plus distributions with large subtractions, and color-singlet production rates are negative.

$$\begin{split} \int_{0}^{l_{+}^{\max}} \frac{dl_{+}}{l_{+}^{1+2\epsilon}} c_{3S_{1}^{[8]}}(P+l) &= -\frac{(l_{+}^{\max})^{-2\epsilon}}{2\epsilon} c_{3S_{1}^{[8]}}(P) & \text{negative} \\ &+ \int_{0}^{l_{+}^{\max}} \frac{dl_{+}}{l_{+}} \left[c_{3S_{1}^{[8]}}(P+l) - c_{3S_{1}^{[8]}}(P) \right] \end{split}$$

 J_0

- Nonperturbative shape function makes subtractions softer at $l_{+}=0$, color-singlet cross section is less negative
- Hence, nonperturbative effects enhance large- p_T cross section

Models for Shape Function

- We can constrain models for the color-octet shape function using the asymptotic form and the normalization condition:
- *l*₊→0 behavior is not strongly constrained, but it should not diverge like 1/*l*₊ to ensure the IR-finiteness of the color-octet ME.
- All models shown here reproduce the color-octet matrix elements from NLO fits.

Corrections to Cross Section

• Nonperturbative corrections are almost independent of model.

- Ratio is constant at large p_T , and diminish as p_T decreases.
- Overall normalization decrease due to use of quarkonium mass instead of quark pole mass

Hee Sok Chung

Cross Section Measurements

- Small- p_T data available from LHCb measurements of $\sigma(J/\psi)$, $\sigma(\psi(2S))$, $\sigma(\Upsilon)$ ^{LHCb}, LHCb measurements of $\sigma(\chi_c)/\sigma(J/\psi)$, $\sigma(\chi_b)/\sigma(\Upsilon)$
 - LHCb, <u>EPJC71 (2011) 1645</u> <u>PLB718 (2012) 431</u> <u>EPJC74 (2014) 3092</u> <u>JHEP11 (2015) 103</u>
 - $\sigma(\chi_c)$ and $\sigma(\chi_b)$ can be obtained from their products.

χ_c Cross Sections

• *P*-wave charmonium cross sections

Experiment from LHCb, <u>EPJC71 (2011) 1645</u>, <u>PLB718 (2012) 431</u> feeddown subtraction using <u>LHCb</u>, <u>EPJC 72 (2012) 2100</u> **CHARM 2023**

χ_b Cross Sections

P-wave bottomonium cross sections

Experiment from LHCb, <u>EPJC74 (2014) 3092</u>, <u>JHEP11 (2015) 103</u> feeddown subtraction using LHCb, <u>JHEP11 (2015) 103</u>

Going to lower pr

• If we were to extrapolate this down to even smaller $p_{T...}$

Kinematical effects in χ_{c} and χ_{b} hadroproduction

CHARM 2023

χ_b Cross Sections

P-wave bottomonium cross sections

- A recent data-driven study suggests similar behaviors of small- p_T cross sections. Boyd, Strickland, Thapa, arXiv:2307.03841 [hep-ph]
- Although direct measurements are not available, knowledge of low- p_T behavior is important for treatment of feeddown in Υ production

Summary

- NRQCD involves *mixing* induced by *soft gluon emission*.
 Soft momentum can be important near boundaries of phase space.
- *Kinematical effects from soft momenta* can be *resummed* by shape function formalism, but this depends on unknown nonperturbative functions. Phenomenological application was *very limited*.
- This work revealed relation between shape function formalism and renormalization in NRQCD. This severely constrains model dependence and restores predictability to standard NRQCD level.
- Inclusion of nonperturbative kinematical corrections soften the small-p_T behavior of χ_c, χ_b cross sections, potentially improving theory description of p_T-dependent χ_c, χ_b cross sections.
- Similar mixing happen in J/ψ , $\psi(2S)$, Υ production: application of shape function formalism to S-wave production can be anticipated