RESUMMATION AND RENORMALIZATION

of Kinematical Effects in χ_{c} AND χ_{b} HADROPRODUCTION

Hee Sok Chung Korea University

Based on JHEP07(2023)007
arXiv:2303.17240 [hep-ph]
11th International Workshop on Charm Physics (CHARM 2023)
July 20, 2023

P-wave Production in NRQCD

- P-wave $\left(\chi_{c}, \chi_{b}\right)$ production at LO in v :

Bodwin, Braaten, Lepage,

$$
\begin{aligned}
& \text { P-wave }\left(\chi_{c}, \chi_{b}\right. \text { production at LO in v: PRD51, 1125 (1995) } \\
& \sigma\left[\chi_{Q J}(P)\right]=(2 J+1)\left(c_{3} P_{J}^{[1]}(P)\left\langle\mathcal{O}^{\chi}{ }_{Q 0}\left({ }^{3} P_{0}^{[1]}\right)\right\rangle+c_{3} S_{1}^{[8]}(P)\left\langle\mathcal{O}^{\chi}{ }_{Q 0}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle\right) \\
& \quad(Q=c \text { or } b)
\end{aligned}
$$

short-distance coefficients, generally available to NLO

- $c_{3 P_{J}^{[1]}}(P)$ and $c_{3 S_{1}^{[8]}}(P)$ describe perturbative production of $Q \bar{Q}$. Matrix elements (ME) $\left\langle\mathcal{O}^{\chi Q 0}\left({ }^{3} P_{0}^{[1]}\right)\right\rangle$ and $\left\langle\mathcal{O}^{\chi Q 0}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle$ describe nonperturbative evolution of $Q Q$ into quarkonium.
- Color-octet matrix elements are obtained from fits to data, which depend on normalization and p_{T} dependence of cross section.
- p_{T} shapes of cross sections come from $c_{3 P_{J}^{[1]}}(P)$ and $c_{3 S_{1}^{[8]}}(P)$. Fixed-order calculations are known to have difficulty describing cross sections over a wide range of p_{T}.

P-wave Production in NRQCD

- P-wave $\left(\chi_{c}, \chi_{b}\right)$ production at LO in v :

$$
\sigma\left[\chi_{Q J}(P)\right]=(2 J+1)\left(c_{3_{J}^{[1]}}(P)\left\langle\mathcal{O}^{\chi} Q^{00}\left({ }^{3} P_{0}^{[1]}\right)\right\rangle+c_{3 S_{1}^{[8]}}(P)\left\langle\mathcal{O}^{\chi Q 0}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle\right)
$$

- $\left\langle\mathcal{O}^{\chi}{ }_{Q 0}\left({ }^{3} P_{0}^{[1]}\right)\right\rangle$: color-singlet $Q \bar{Q}$ evolve into χ_{Q} (with or without soft radiation) $\left\langle\mathcal{O}^{\chi Q 0}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle$: color-octet $Q \bar{Q}$ evolve into χ_{Q} by soft radiation.
- Color-octet $Q \bar{Q}$ can also evolve into color-singlet $Q \bar{Q}$ by soft radiation before evolving into χ_{Q}.
Two channels mix by soft gluon emission due to renormalization:
$\left(\frac{d}{d \log \Lambda} c_{3} P_{J}^{[1]}(P)\right)\left\langle\mathcal{O}^{\chi Q 0}\left({ }^{3} P_{0}^{[1]}\right)\right\rangle+c_{3} S_{1}^{[8]}(P)\left(\frac{d}{d \log \Lambda}\left\langle\mathcal{O}^{\chi Q 0}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle\right)=0$
scale dependence of short-distance coefficient
scale dependence of renormalized color-octet ME
- Same form of mixing happens for S-wave quarkonium production (ψ, Υ) between color-octet ${ }^{3} P_{J}$ and ${ }^{3} S_{1}$ states

Mixing in P-wave Production

- Mixing in dimensional regularization $d=4-2 \epsilon$:

- $\int^{\left|\boldsymbol{l}_{\text {max }}\right|} d|\boldsymbol{l}| \quad\left|\boldsymbol{l}_{\max }\right|^{-2 \epsilon} \quad$ IR pole at $l=0$ produces
$\bullet \int_{0} \quad \frac{|l|}{|\boldsymbol{l}|^{1+2 \epsilon}} c_{3 S_{1}^{[8]}}(P+l)=-\frac{\left|\boldsymbol{l}_{\max }\right|}{2 \epsilon_{\mathbf{I R}}} c_{3 S_{1}^{[8]}}(P)$ scale dependence

$$
\begin{aligned}
& +\int_{0}^{\left|l_{\max }\right|} \frac{d|\boldsymbol{l}|}{|\boldsymbol{l}|}\left[c_{3 S_{1}^{[8]}}(P+l)-c_{3 S_{1}^{[8]}}(P)\right] \\
& +O(\epsilon) \quad \begin{array}{l}
\text { plus distribution, } \\
\text { singular at } l=0
\end{array}
\end{aligned}
$$

- Gluon momentum $l>0$ is included in the perturbative short-distance coefficient, while only $l=0$ is included in the nonperturbative ME. However, nonperturbative soft gluons can have nonzero momentum.

Production Kinematics

- Nonzero soft gluon momentum implies that quarkonium momentum is smaller than $Q \bar{Q}$ momentum
- In large- p_{T} hadroproduction, $\left|P_{Q \bar{Q}}\right| \lesssim \boldsymbol{x}_{\mathbf{1}} \boldsymbol{x}_{\mathbf{2}} \sqrt{\boldsymbol{s}} / \mathbf{2}$

Cross section is sensitive to small changes in Bjorken x. $Q \bar{Q}$ cross section is singular at maximum $\boldsymbol{P}\left(l_{\text {soft }}=0\right)$. Hence, quarkonium cross section can be sensitive to soft gluon momentum.

Maximum available momentum

$$
\approx x_{1} x_{2} \sqrt{s} / 2
$$

Beam axis

Production Kinematics

- Soft radiation is "soft ($\sim m v$)" in the quarkonium rest frame. Need to boost from quarkonium rest frame to CM frame.

- Soft radiation has no preferred direction in the $\mathbf{P = 0}$ rest frame, but after a large boost ($P \gg m_{\chi}$) the only relevant direction of soft radiation is lightlike and anti-parallel to \boldsymbol{P}.
This effect can be resummed!

Shape Functions

- Schematic form of lowest-dimensional NRQCD matrix elements, defined in quarkonium rest frame:

$$
\left\langle\mathcal{O}^{\chi_{Q}}(\Gamma)\right\rangle=\left\langle\chi^{\dagger} \Gamma \psi \mathcal{P}_{\chi_{Q}} \psi^{\dagger} \Gamma \chi\right\rangle \begin{gathered}
\text { Pauli and color matrices, } \\
\text { covariant derivatives }
\end{gathered}
$$

- We can have operator matrix elements that read off the $Q \bar{Q}$ momentum in a specific direction l given by

$$
\left\langle\chi^{\dagger} \Gamma \psi \mathcal{P}_{\chi_{Q}}(l \cdot D)^{n} \psi^{\dagger} \Gamma \chi\right\rangle
$$

- These matrix elements are generated by the "shape function"

$$
\mathcal{S}_{\Gamma}^{\chi Q}\left(l_{+}\right)=\left\langle\chi^{\dagger} \Gamma \psi \mathcal{P}_{\chi_{Q}} \delta\left(l_{+}-i D_{+}\right) \psi^{\dagger} \Gamma \chi\right\rangle
$$

- In practice, we only need color-octet shape functions, because due to vacuum-saturation approximation, color-singlet shape functions are trivial : $\mathcal{S}_{\Gamma_{\text {singlet }}}^{\chi_{Q}}\left(l_{+}\right)=\left\langle\mathcal{O}^{\chi Q}\left(\Gamma_{\text {singlet }}\right)\right\rangle \delta\left(l_{+}\right)$

Shape Function Formalism

- NRQCD formalism :
$\sigma\left[\chi_{Q J}(P)\right]=(2 J+1)\left(c_{3_{J} P_{J}^{[1]}}(P)\left\langle\mathcal{O}^{\chi Q 0}\left({ }^{3} P_{0}^{[1]}\right)\right\rangle+c_{3 S_{1}^{[8]}}(P)\left\langle\mathcal{O}^{\chi}{ }_{Q 0}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle\right)$
- Shape function formalism (NRQCD with kinematical corrections) :

$$
\begin{aligned}
\sigma\left[\chi_{Q J}(P)\right]=(2 J+1) & \left(s_{3} P_{J}^{[1]}(P)\left\langle\mathcal{O}^{\chi Q 0}\left({ }^{3} P_{0}^{[1]}\right)\right\rangle \text { er } \quad \begin{array}{r}
l \text { mon } \\
\text { by sot }
\end{array}\right. \\
& \left.+\int_{0}^{\infty} d l_{+} s_{3 S_{1}^{[8]}}(P+l) \mathcal{S}_{3 S_{1}[8]}^{\chi(8)}\left(l_{+}\right)\right)
\end{aligned}
$$

- Formally $\int_{0}^{\infty} d l_{+} \mathcal{S}_{3}^{\chi Q 0} S_{1}^{[8]}\left(l_{+}\right)=\left\langle\mathcal{O}^{\chi Q 0}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle$, but both sides are UV divergent and require renormalization.
- Knowledge of the nonperturbative shape function $\mathcal{S}_{3 S_{1}^{[8]}}^{\chi_{Q 0}}\left(l_{+}\right)$ needed to compute cross sections.

Beneke, Rothstein, Wise, PLB408 (1997) 373 Fleming, Leibovich, Mehen, PRD68, 094011 (2003)

Renormalization

- Renormalization of color-octet matrix element

$$
\begin{aligned}
& \bar{Q}-\bar{Q} \\
& Q-\text { Ge }_{\text {Ee }} Q \\
& + \\
& Q \longrightarrow Q \\
& \left.\left\langle\mathcal{O}^{\chi Q 0}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle\right|_{\mathrm{UV}}=\left\langle\mathcal{O}^{\chi Q 0}\left({ }^{3} P_{0}^{[1]}\right)\right\rangle \frac{4 \alpha_{s} C_{F}}{3 N_{c} \pi m^{2}} \int_{0}^{\infty} \frac{d l_{+}}{l_{+}^{1+2 \epsilon}}
\end{aligned}
$$

- Normalization of the shape function must reproduce this integral. This gives the asymptotic behavior at large l_{+}

$$
\left.\mathcal{S}_{3_{S} S_{1}^{8]}}^{\chi_{Q 0}}\left(l_{+}\right)\right|_{\text {asy }, d=4}=\left\langle\mathcal{O}^{\chi Q 0}\left({ }^{3} P_{0}^{[1]}\right)\right\rangle \times \frac{4 \alpha_{s} C_{F}}{3 N_{c} \pi m^{2}} \frac{1}{l_{+}}
$$

Nonperturbative Shape Function

- Asymptotic behavior from renormalization:

$$
\frac{d}{d \log \Lambda} \int_{0}^{\Lambda} d l_{+} \mathcal{S}_{3^{3} S_{1}^{[8]}}^{\chi{ }_{Q 0}}\left(l_{+}\right)=\left.\frac{d}{d \log \Lambda}\left\langle\mathcal{O}^{\chi Q 0}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle^{(\Lambda)}\right|_{\text {renormalized }}
$$

- Nonperturbative normalization must be IR finite:

$$
\int_{0}^{\infty} d l_{+} \mathcal{S}_{3_{S}}^{\chi_{Q}^{[8]}}\left(l_{+}\right)=\left.\left\langle\mathcal{O}^{\chi_{Q 0}}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle\right|_{\text {bare }}
$$

- Form of nonperturbative shape function is strongly constrained from renormalization and IR finiteness.

- $l_{+} \rightarrow 0$ behavior is model dependent.

Corrections to Cross Section

- P-wave short-distance coefficients have plus distributions with large subtractions, and color-singlet production rates are negative.

$$
\begin{aligned}
\int_{0}^{l_{+}^{\max } \frac{d l_{+}}{l_{+}^{1+2 \epsilon}} c_{3 S_{1}^{[8]}}(P+l)=} & -\frac{\left(l_{+}^{\max }\right)^{-2 \epsilon}}{2 \epsilon} c_{3 S_{1}^{[8]}}(P) \\
& +\int_{0}^{l_{+}^{\max }} \frac{d l_{+}}{l_{+}}\left[c_{3 S_{1}^{[8]}}(P+l)-c_{3 S_{1}^{[8]}}(P)\right]
\end{aligned}
$$

- Nonperturbative shape function makes subtractions softer at $l_{+}=0$, color-singlet cross section is less negative
- Hence, nonperturbative effects enhance large- p_{T} cross section

Models for Shape Function

- We can constrain models for the color-octet shape function using the asymptotic form and the normalization condition:
- $l_{+} \rightarrow 0$ behavior is not strongly constrained, but it should not diverge like $1 / l_{+}$to ensure the IR-finiteness of the color-octet ME.
- All models shown here reproduce the color-octet matrix elements from NLO fits.

Corrections to Cross Section

- Nonperturbative corrections are almost independent of model.
octet cross section in

$$
r=\frac{\text { shape function formalism }}{\text { octet cross section in NRQCD }}
$$

- Ratio is constant at large $\boldsymbol{p}_{\boldsymbol{T}}$, and diminish as p_{T} decreases.
- Overall normalization decrease due to use of quarkonium mass instead of quark pole mass

Cross Section Measurements

- Small- p_{T} data available from

LHCb measurements of $\boldsymbol{\sigma}(J / \boldsymbol{\psi}), \boldsymbol{\sigma}(\boldsymbol{\psi}(2 S)), \boldsymbol{\sigma}(\Upsilon)$
LHCb, EPJC71 (2011) 1645 PLB718 (2012) 431 LHCb measurements of $\boldsymbol{\sigma}\left(\chi_{c}\right) / \boldsymbol{\sigma}(J / \boldsymbol{\psi}), \boldsymbol{\sigma}\left(\chi_{b}\right) / \boldsymbol{\sigma}(\Upsilon)$

EPJC74 (2014) 3092 JHEP11 (2015) 103 $\boldsymbol{\sigma}\left(\chi_{c}\right)$ and $\boldsymbol{\sigma}\left(\chi_{b}\right)$ can be obtained from their products.

χ_{c} Cross Sections

- P-wave charmonium cross sections

Experiment from LHCb, EPJC71 (2011) 1645, PLB718 (2012) 431 feeddown subtraction using LHCb, EPJC 72 (2012) 2100

χ_{b} Cross Sections

- P-wave bottomonium cross sections

Experiment from LHCb, EPJC74 (2014) 3092, JHEP11 (2015) 103 feeddown subtraction using LHCb, JHEP11 (2015) 103

Going to lower p_{T}

- If we were to extrapolate this down to even smaller $p_{т} .$.

LHCb, EPJC74 (2014) 3092

χ_{b} Cross Sections

- P-wave bottomonium cross sections

extrapolation of LHCb, EPJC74 (2014) 3092
- A recent data-driven study suggests similar behaviors of small- p_{T} cross sections.

Boyd, Strickland, Thapa, arXiv:2307.03841 [hep-ph]

- Although direct measurements are not available, knowledge of low- p_{T} behavior is important for treatment of feeddown in Υ production

Summary

- NRQCD involves mixing induced by soft gluon emission. Soft momentum can be important near boundaries of phase space.
- Kinematical effects from soft momenta can be resummed by shape function formalism, but this depends on unknown nonperturbative functions. Phenomenological application was very limited.
- This work revealed relation between shape function formalism and renormalization in NRQCD. This severely constrains model dependence and restores predictability to standard NRQCD level.
- Inclusion of nonperturbative kinematical corrections soften the $\boldsymbol{s m a l l}-\boldsymbol{p}_{\boldsymbol{T}}$ behavior of χ_{c}, χ_{b} cross sections, potentially improving theory description of p_{T}-dependent χ_{c}, χ_{b} cross sections.
- Similar mixing happen in $J / \boldsymbol{\psi}, \boldsymbol{\psi}(2 S), \Upsilon$ production: application of shape function formalism to S-wave production can be anticipated

