Direct CP Violation in hadronic twobody charm-meson decays

Luiz VALE SILVA

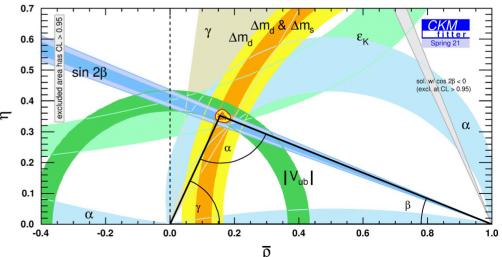
In collaboration with Antonio Pich and Eleftheria Solomonidi (IFIC, UV – CSIC) 💶 based on 2305.11951 (to appear in PRD), and upcoming publication 🌉

CHARM 2023, 17/07 - Siegen, Germany

"This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 101031558"

Charm-flavour physics

- Flavour physics of the up-type: <u>complementary</u>, but less well known than down-type strange and <u>bottom</u> sectors
 - QCD @ intermediate regime $M_K << m_c << m_b$ [consolidated theoretical tools for the two extrema, χPT_3 and HQET; slower behaviour of the $1/m_c$ perturbative series]
 - EW sector largely uncharted; more effective GIM mechanism: potential to identify BSM
- CKM: a <u>single</u> CP-odd phase responsible for CPV phenomena in all quark flavour sectors of the SM _□



Measurement of direct CPV

Major discovery by LHCb in 2019:

$$\Delta A_{\mathrm{CP}} = A_{\mathrm{CP}}(K^-K^+) - A_{\mathrm{CP}}(\pi^-\pi^+) \neq 0$$
D° to K-K+ asym. D° to $\pi^-\pi^+$ asym.

[I will neglect indirect CPV throughout this talk]

- Bounds in many other cases: $\pi^+\pi^-$ and K^+K^- (individually), $\pi^0\pi^0$, $\pi^+\pi^0$, K_sK_s , K^+K_s , etc. [LHCb '22] [LHCb, BABAR, Belle, ...]
- Much progress is expected in this decade: LHCb Upgrade I and Belle II; about 3-fold better sensitivity to CPV in ΔA_{CP}

Direct CPV from "penguin topologies"

Present exp. sensitivity to penguins

LHCb UI

LHCb UII

Future exp. sensitivity to penguins

SM description of direct CPV

Theory has to match experimental progress

$$A_{CP}^{i\to f} \equiv \frac{|\langle f|T|i\rangle|^2 - |\langle \overline{f}|T|\overline{i}\rangle|^2}{|\langle f|T|i\rangle|^2 + |\langle \overline{f}|T|\overline{i}\rangle|^2} \approx -2\frac{B}{A}\sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2)$$

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \left[\sum_{i=1}^2 \underbrace{C_i(\mu) \left(\lambda_d Q_i^d + \lambda_s Q_i^s\right)}_{\text{current-current operators}} - \lambda_b \sum_{i=3}^6 \underbrace{C_i(\mu)Q_i}_{\text{penguin operators}} \right] + h.c. \tag{CKM factors}$$
 [Buchalla, Buras, Lautenbacher '95]

- We need both strong-phase ($=\delta$) and weak-phase ($=\phi$) differences
- Strong-phases enhance A_{CP}, but also make its description more challenging
- HERE: discussion of non-perturbative QCD effects, their extraction from data, and physical impact on direct CPV in the charm sector

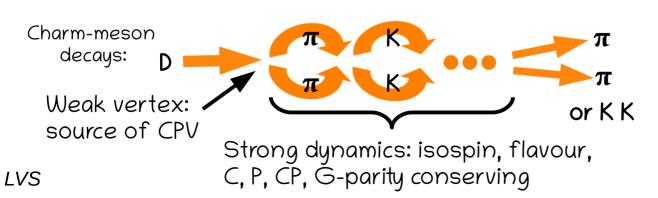
[see also: Brod, Grossman, Kagan, Zupan '12; Franco, Mishima, Silvestrini '12; Khodjamirian, Petrov '17; Soni '19; Chala, Lenz, Rusov, Scholtz '19; Schacht, Soni '21; etc., etc.]

Rescattering in weak decays

 Rescattering among stable on-shell particles produces a CP-even (strong) phase; elastic limit: Watson theorem

phase of the π FF = (phase-shift $\pi\pi \to \pi\pi$) mod 180°, @ elastic region above $\pi\pi$ threshold

- Strong and weak dynamics are factorized; final-state rescattering in transition amplitude encoded in Ω
- Relate dispersive and absorptive parts based on analyticity of the amplitudes (Mandelstam variables)



(dispersive) (absorptive)
$$ext{Re}[\Omega(s)] = rac{1}{\pi} \! \int_{4M_\pi^2}^\infty rac{ ext{Im}[\Omega(s')]}{s'-s} ds'$$

Dispersion Relation (DR) for Ω entering the transition amplitude

Omnes factor

• Elastic limit, explicit solution of the integral equation:

[Muskhelishvili '46; Omnes '58]

behaviour dictated by δ

Explicit solution to the DR (isospin=I, total angular mom.=J), once-subtracted @ s_0 :

$$A_J^I(s) = \overline{A}_J^I(s) \exp\left\{i \, \delta_J^I(s)\right\} \exp\left\{\frac{s-s_0}{\pi} \int_{4M_\pi^2}^\infty \frac{dz}{z-s_0} \frac{\delta_J^I(z)}{z-s}\right\}$$
 polynomial ambiguity = subtraction constant Omnes factor $|\Omega|$:

 Phase-shift and Omnes factor embody the effects of rescattering in the amplitudes of weak decays

• Polynomial ambiguity (analytical properties of Ω unchanged): requires some physical input [e.g., in K to $\pi\pi$, employ χPT_3] [Pallante, Pich '99 '00;

[Pallante, Pich '99 '00; Pallante, Pich, Scimemi '01; Gisbert, Pich '17]

Two-channel analysis of rescattering

 Inelastic case: set of integral equations (DRs) related by unitarity; no explicit solution known; DRs have to be solved numerically

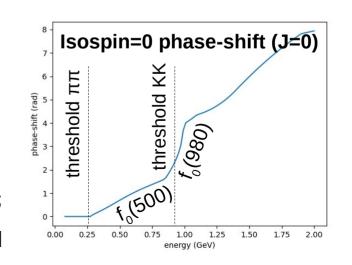
[Moussallam '00; Descotes-Genon '03]

- Neglect the effect of further channels
- Experimental input for (ππ, KK) phaseshifts and inelasticity (ππ ↔ KK) in isospin=0 available [Garcia-Martin, Kaminski, Pelaez

[Garcia-Martin, Kaminski, Pelaez, Ruiz de Elvira, Yndurain '11; Pelaez, Rodas, Ruiz De Elvira '19; Pelaez, Rodas '20][Buettiker, Descotes-Genon, Moussallam '04]

$$R(s) = R(s_0) + \frac{s - s_0}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \frac{1}{s' - s} \frac{X(s')R(s')}{s' - s_0}$$

R: real part of amplitudes X: $\frac{2-by-2}{(a-b)}$ rescattering matrix [X = tan(δ) in the elastic limit]



Further physical inputs

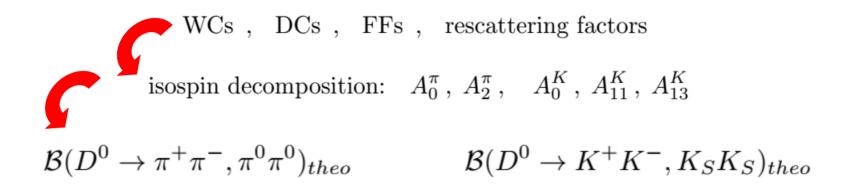
- Subtraction constant of DRs taken from large-N_c; improvement given by rescattering (sub-leading in large-N_c)
- Decay constants and form factors (independent sub-leading large-N_c effects)
- Large perturbative QCD effects $\alpha_s(\mu)*log(\mu/M_w)$ are included in Wilson Coefficients (RGE improvement)

[Buras, Gerard, Rueckl '85; Bauer, Stech, Wirbel '86; Buras, Silvestrini '00; Mueller, Nierste, Schacht '15]

Short distance: WCs, CKM factors decay form factors Ex. of subtraction Rescattering/ Omnes: phase-shifts const., tree topology: leading in large-N and inelasticity

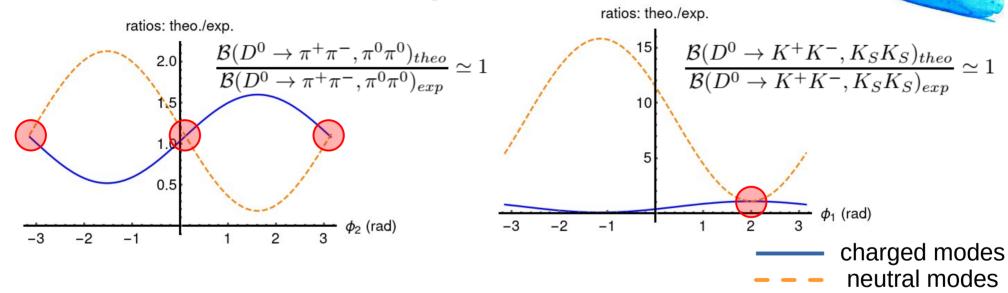
• <u>Isospin analysis</u>: information from D⁺ to $\pi^+\pi^0$, K⁺K_s branching ratios into D⁰ decays; phase-shifts of final states with isospin=1 and =2 undetermined

CP-even amplitudes and BRs



- BR_{theo}~BR_{exp} can be found; however, <u>large uncertainties are present</u>
- Inelasticity is the main source of uncertainties
- Use BRs to control uncertainties of dispersive inputs: better prediction for A_{CP}

CP-even amplitudes and BRs



- Phase-shifts of final states with isospin=2 and =1 adjusted
- Isospin=0: source of breaking of symmetry between pions and kaons, of size similar to f_{κ}/f_{π} & $F^{DK}/F^{D\pi}$
- Other sources of breaking: I=2 (for pion pairs), I=1 (for kaon pairs)

Luiz VALE SILVA - Direct CPV in charm

Mechanisms of CPV

Isospin=0:

rescattering factors

$$\begin{pmatrix} A_0^\pi + i\,B_0^\pi \\ A_0^K + i\,B_0^K \end{pmatrix} = \Omega(M_D^2) \begin{pmatrix} \lambda_d\,T_{\pi\pi}^{CC} - \lambda_b\,T_{\pi\pi}^P \\ \lambda_s\,T_{KK}^{CC} - \lambda_b\,T_{KK}^P \end{pmatrix}$$
 CKM factors, WCs, DCs, FFs

similar expressions for I=2 (pions) and I=1 (kaons), which are treated elastically

- CPV from different interference terms between amplitudes
- I=0/I=0: possible due to rescattering; correlation in pions and kaons: $CPV[\pi\pi]+CPV[KK]=0$
- I=0 interference with exotic states: I=2 (pions), I=1 (kaons)
- scalar+/-pseudoscalar structure: small WC, but enhanced

$$\frac{2 M_{\pi}^2}{(m_u + m_d) m_c}, \frac{2 M_K^2}{m_s m_c}$$

@ μ ~ 2 GeV

CP-odd amplitudes and CP asym.

- $\begin{array}{c} \text{WCs , DCs , FFs , rescattering factors} \\ \text{isospin decomposition:} \quad A_0^\pi \,, \, B_0^\pi \,, \, A_2^\pi \,, \, B_2^\pi \,, \quad A_0^K \,, \, B_0^K \,, \, A_{11}^K \,, \, B_{11}^K \,, \, A_{13}^K \,, \, B_{13}^K \\ \Delta A_{CP}^{theo} \approx -2 \, \Sigma_{i=K,\pi} \underbrace{\frac{B_i}{A_i} \, \sin(\delta_1 \delta_2)}_{\text{A}_i} \underbrace{\frac{\text{Jarlskog}}{|\lambda_d|^2}}_{\text{e} = 6.2 \times 10^{-3}} \\ \text{A}_{\text{p}, B_i: full amplitude moduli (schematic)} \\ \end{array} \begin{array}{c} \Delta A_{CP}^{exp} \simeq -2 \times 10^{-3} \\ \text{mainly from D}^0 \text{ to } \pi^+\pi^- \text{[LHCb '22]} \end{array}$
 - Weak-phase: rephasing-invariant Jarlskog/ $|\lambda_d|^2$ from bottom & strange
 - Small CPV: rescattering effects not large enough
 - It seems difficult to explain the measured CPV based on this approach

- Data-driven approach: isospin=0 rescattering effects through DRs; isospin=2 & isospin=1 rescattering effects from D+ to $\pi^+\pi^0$, K+K_s BRs
 - subtraction constants given by large-N_c
- Exp. values of $\pi^+\pi^-$, $\pi^0\pi^0$ and K^+K^- , K_sK_s BRs used to control uncs.
- Predicted CP asymmetries are too small

Many thanks!, Danke schoen!

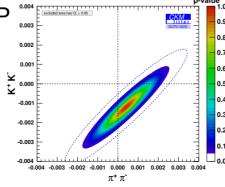
Fit of isospin amplitudes

isospin decomposition: A_0^{π} , B_0^{π} , A_2^{π} , A_0^{K} , B_0^{K} , A_{11}^{K} , B_{11}^{K} , A_{13}^{K} [Franco, Mishima, Silvestrini '12]

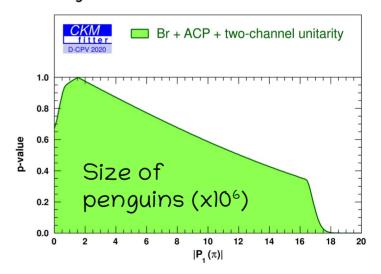
- Incorporate unitarity @ m_D only
- Amplitudes satisfy relations involving phaseshifts and inelasticity, that can be implemented in the isospin fit
- Fit includes also BRs and CP asyms.

Results for the CP asymmetries in charged modes

[for inclusion of phaseshifts and inelasticity @ m_D see also: Bediaga, Frederico, Magalhaes '22]



Global fit combination of D to $\pi\pi$ and D to KK branching ratios & CP asymmetries



Penguin still largely unconstrained

Operator basis and CPV

- WCs of penguin operators are tiny (aka GIM mechanism)
- One effect of CPV comes from non-unitarity of the 2-by-2 CKM sub-matrix; CP-odd contribution comes from loop topologies with insertions of current-current operators (light flavours in the loop, i.e., long-distance effect)
- The quantity Q_{udcs} is rephasing-invariant and has an imaginary part, namely, the Jarlskog

μ	C_1	C_2	C_3	C_4	C_5	C_6
m_c	1.22	-0.40	0.021	-0.055	0.0088	-0.060
2 GeV	1.18	-0.32	0.011	-0.031	0.0068	-0.032

[Buchalla, Buras, Lautenbacher '95]

$$\lambda_d \lambda_s^* = V_{ud} V_{cs} V_{us}^* V_{cd}^* = Q_{udcs}$$

Implications of a Large Phase Shift

Slide from Antonio Pich. "Kaon decays & CP Violation", FPCP 2020 (virtual)

$$A_I \equiv A_I e^{i\delta_I} = \text{Dis}(A_I) + i \text{Abs}(A_I)$$

Important difference with charm physics: analogous kaon process is elastic; moreover, in charm, e.g.: $arg(A_2^{\pi}/A_0^{\pi}) \sim \pm 90^{\circ}$

Unitarity:

$$\delta_0(M_K) = (39.2 \pm 1.5)^\circ$$
 \longrightarrow $A_0 \approx 1.3 \times \mathrm{Dis}(A_0)$

$$K$$
 π
 π
 π

$$\tan \delta_I = \frac{\operatorname{Abs}(\mathcal{A}_I)}{\operatorname{Dis}(\mathcal{A}_I)}$$

$$A_I = \operatorname{Dis}(A_I) \sqrt{1 + \tan^2 \delta_I}$$

Analyticity:
$$\triangle \operatorname{Dis}(\mathcal{A}_I)[s] = \frac{1}{\pi} \int dt \, \frac{\operatorname{Abs}(\mathcal{A}_I)[t]}{t-s-i\epsilon} + \text{subtractions}$$

 \longrightarrow Large Abs (A_0) \longrightarrow Large correction to Dis (A_0)