Three-body unitary coupledchannel analysis on $\eta(1405/1475)$

Phys. Rev. D 107, L091505 (2023)

Satoshi Nakamura (Shandong Univ., China)

Collaborators: J.-J. Wu, Q. Huang, H.-P. Peng, Y. Zhang, Y. Zhu (UCAS, Beijing) (Nanjing) (USTC, Hefei)

Introduction

J/ψ (charmonia) decays offer great playground to study light (exotic) hadrons

We will study $\eta(1405/1475)$ by analyzing radiative J/ψ decays

 $\eta(1405/1475)$: isoscalar pseudoscalar light meson(s) in 1.4–1.5 GeV region

interesting, controversial, and open questions

• One state or two different states ?

Two peaks in $K\overline{K}\pi$ spectrum data for $\pi^- p \to K^+ K^- \pi^0 n$, $p\overline{p} \to K\overline{K}\pi\pi\pi\pi$, $J/\psi \to \gamma(K\overline{K}\pi)$ One peak in $p\overline{p} \to \eta\pi\pi\pi\pi$, $J/\psi \to \gamma(\eta\pi\pi)$, $\gamma\gamma \to K\overline{K}\pi, \eta\pi\pi$

• Quark model : $\eta(1405/1475) \rightarrow$ Radial excitation of η' (only one state available in quark model) How about the other state ? Glueball ? But LQCD predicts mass of 2 - 2.5 GeV

• Large isospin violating decay rate : $\eta(1405/1475) \rightarrow \pi\pi\pi$

statistically limited data \rightarrow allow various theoretical interpretations

BESIII amplitude analysis on $J/\psi \rightarrow \gamma K_S K_S \pi^0$

JHEP 03 (2023) 121

Based on a sample of $\sim 10^{10} J/\psi$ decays \rightarrow currently the most precise data on $\eta(1405/1475)$

 \rightarrow quantitative discussions on $\eta(1405/1475)$ at the previously unreachable level

Conclusions • $\eta(1405/1475)$ has two states \rightarrow ruling out single-state solution

• Main decay modes

 $\eta(1405) \rightarrow a_0(980)\pi$

 $\eta(1475) \rightarrow K^*\overline{K}$

Theoretical issues still remain

• In the BESIII analysis, $\eta(1405/1475)$ mass and width values are Breit-Wigner parameters (not pole)

Breit-Wigner amplitude does not respect unitarity and not suitable when:

-- more than one resonances are overlapping

-- resonance is near its decay channel threshold

← $\eta(1405)$ and $\eta(1475)$ are close ← $\eta(1405)$ is near $K^*\overline{K}$ threshold

Theoretically sound approach \rightarrow analyze (fit) BESIII data with unitary coupled-channel model $\rightarrow \eta(1405/1475)$ poles are searched in analytically continued amplitude

• Same unitary coupled-channel model should also explain:

Different lineshapes for different final states, large isospin violating decay rates, etc.

This work

Unitary coupled-channel analysis of radiative J/ψ decays

Data : Dalitz plots from BESIII energy dependent solution for $J/\psi \rightarrow \gamma \eta (1405/1475) \rightarrow \gamma (K_S K_S \pi^0)$ Branching ratios for $\eta \pi \pi$ and $\pi \pi \gamma$ final states relative to $K \overline{K} \pi$

 \rightarrow On the basis of unitary coupled-channel model, we will address the $\eta(1405/1475)$ puzzles

- Determine $\eta(1405/1475)$ pole locations for the first time (practical issue; no longer academic)
- Predict $\eta(1405/1475) \rightarrow \eta \pi \pi$ lineshape \rightarrow understanding process-dependent lineshape
- Predict $\eta(1405/1475) \rightarrow \pi\pi\pi$ branching fractions, lineshapes

η^* decay processes

(until infinite loops)

$\eta^* \rightarrow \eta \pi \pi$

Final state interactions from Faddeev equation \rightarrow three-body unitarity

Coupled-channels included

 $\begin{array}{cccc} K^{*}(892)\overline{K} , \ K_{0}^{*}(700)\overline{K} , \ a_{0}(980)\pi, \ a_{2}(1320)\pi, \ f_{0}\eta, \ \rho\rho \\ & (\kappa) & \rightarrow f_{0}(500), \ f_{0}(980) \\ & f_{0}\eta, \ \rho\rho \rightarrow K\overline{K}\pi \text{ via loop} \end{array}$

BESIII model [JHEP 03 (2023) 121]

 $K^*(892)\overline{K}$, $a_0(980)\pi$, $a_2(1320)\pi$

Why our model needs more channels ? \rightarrow requirement from unitarity

→ unified description of $K\overline{K}\pi$, $\eta\pi\pi$, $\rho^0\gamma$, $\pi\pi\pi$ final states ¹⁰

η^* propagator

Bare state: seed of resonance; resonance without meson-meson continuum

 $\eta(1405/1475)$ poles are formed by non-perturbative couplings between bare η^* and $K^*\overline{K}$, $a_0(980)\pi$, ... (= poles of dressed η^* propagator)

Unitary coupled-channel model : resonance pole (mass, width) and decay dynamics are explicitly related.

different (overlapping) resonances strongly couple (unitarity requirement)

Breit-Wigner model : decay dynamics are simulated by mass and width parameters

different (overlapping) resonances do not couple

Initial radiative J/ψ decay vertex

Full amplitude for $J/\psi \rightarrow \gamma \eta (1405/1475) \rightarrow \gamma K \overline{K} \pi$, $\gamma \eta \pi \pi$, $\gamma \pi \pi \gamma$, $\gamma \pi \pi \pi$

tree, one-loop, two-loop, until infinite loops (Faddeev amplitude)

• Dalitz plot distribution (pseudodata) for $J/\psi \rightarrow \gamma \eta (1405/1475) \rightarrow \gamma (K_S K_S \pi^0)$

generated from energy-dependent MC solution of BESIII analysis [JHEP 03 (2023) 121]

 $1300 \le M_{K_S K_S \pi^0} \le 1600 \text{ MeV}$ (30 points, 10 MeV interval)

•
$$\frac{\text{Br}[J/\psi \to \gamma \eta (1405/1475) \to \gamma (K\overline{K}\pi)]}{\text{Br}[J/\psi \to \gamma \eta (1405/1475) \to \gamma (\eta \pi^+ \pi^-)]} = \frac{(2.8 \pm 0.6) \times 10^{-3}}{(3.0 \pm 0.5) \times 10^{-4}} \sim 6 - 13 \quad (\text{PDG})$$

$$\frac{\text{Br}[J/\psi \to \gamma \eta (1405/1475) \to \gamma (\rho^0 \gamma)]}{\text{Br}[J/\psi \to \gamma \eta (1405/1475) \to \gamma (K\overline{K}\pi)]} \sim 0.015 - 0.043 \quad (\text{MARKIII}, \text{BESII combined})$$

$K_S K_S \pi^0$ final state

Dalitz plot distribution

 $J/\psi \to \gamma \eta (1405/1475) \to \gamma (K_S K_S \pi^0)$

 $K_S K_S \pi^0$ invariant mass

Clear $a_0(980)$ -like and $K^*(892)$ peaks \rightarrow

Overall good fit to pseudodata generated from the energy dependent solution of BESIII analysis [JHEP 03 (2023) 121]

16

Overall good fit

$K_S K_S \pi^0$ invariant mass distribution

 $Rc = K^*\overline{K}$, $a_0\pi$, $\kappa\overline{K}$ contributions are separately shown Full is coherent sum of all decay channels

- $K^*\overline{K}$ is dominant
- $a_0\pi$ is small

$K_S K_S \pi^0$ invariant mass distribution

Comparison with BESIII amplitude analysis

$K_S K_S \pi^0$ invariant mass distribution

- Qualitative differences in decay dynamics between our and BESIII models
- Our (BESIII) model has small (large) $a_0\pi$ contribution; we considered ratio \rightarrow
- Our model has substantial $\kappa \overline{K}$ contribution (coupled-channel effect)

 $Br[\eta(1405/1475) \rightarrow K\overline{K}\pi]$

Br[$\eta(1405/1475) \rightarrow \eta \pi^+ \pi^-$]

$K_S K_S \pi^0$ invariant mass distribution

$\eta\pi\pi$ final state

Prediction of $\pi^+\pi^-\eta$ **lineshape**

- Consistent with MARK III
- $a_0(980)\pi$ and $f_0(980)\pi$ comparably contribute

Q. Why lineshapes are different between $\eta(1405/1475) \rightarrow K\overline{K}\pi$ and $\eta(1405/1475) \rightarrow \eta\pi\pi$?

Ans. Main decay mechanisms are different

 $\eta(1405/1475) \to \underline{K^*\overline{K}} \to K\overline{K}\pi$

 $\eta(1405/1475) \to a_0(980)\pi, f_0(980)\eta \to \eta\pi\pi$

and $K^*\overline{K}$ and $a_0(980)\pi$ couple differently with $\eta(1405)$ and $\eta(1475)$

Isospin-violating $\pi\pi\pi$ **final state**

Prediction of $\pi\pi\pi$ **lineshape**

- Isospin violation is caused by incomplete cancellation between $K^*K^+K^-$ and $K^*K^0\overline{K}^0$ triangle loops ($m_{K^{\pm}} \neq m_{K^0}$)
- Only in small kinematical window of $m_{\pi\pi}$ near $K\overline{K}$ threshold, significant isospin violation occurs
- Triangle singularity further enhances the isospin violation at $m_{\pi\pi\pi} \sim 1.4 \text{ GeV}$

Prediction of $\eta(1405/1475) \rightarrow \pi\pi\pi$ branching fractions

From BESIII and PDG

DATA

$$R \equiv \frac{\text{Br}[J/\psi \rightarrow \gamma \eta (1405/1475) \rightarrow \gamma (\pi \pi \pi)]}{\text{Br}[J/\psi \rightarrow \gamma \eta (1405/1475) \rightarrow \gamma (K\overline{K}\pi)]}$$
 Our prediction

$$\frac{(\pi^{+}\pi^{-}\pi^{0})}{(2.8\pm0.6)\times10^{-3}} \sim 0.004 - 0.007 \qquad R = 0.0046$$

$$(\pi^0 \pi^0 \pi^0) = \frac{(7.10 \pm 0.82 \pm 0.72) \times 10^{-6}}{(2.8 \pm 0.6) \times 10^{-3}} \sim 0.002 - 0.003 \qquad R = 0.0015$$

Good agreements with data

$\eta(1405/1475)$ poles

$\eta(1405/1475)$ poles \rightarrow poles of dressed η^* propagator

28

Pole search With analytic continuation, find complex energy E where $G(E) = \frac{1}{2}$

dressed η^*

G(E) =

	$M~({ m MeV})$	$\Gamma ~({ m MeV})$	Riemann sheet (ph	nysical or unphysical)
$\alpha = 1$	1401.6 ± 0.6	65.8 ± 1.0	(up)	
lpha=2	1401.6 ± 0.6	66.3 ± 0.9	(pp)	← η(1405)
$\alpha = 3$	1495.0 ± 1.5	86.4 ± 1.8	(up)	← η(1475)
BESIII [JHEP 03 (2023) 121]	1391.7 ± 0.7	60.8 ± 1.2		← η(1405)
	1507.6 ± 1.6	115.8 ± 2.4		← η(1475)

- Statistical errors are estimated with bootstrap method (50 pseudodata sets)
- Three poles, corresponding to two states $\eta(1405)$ pole is close to $K^*\overline{K}$ branch point \rightarrow pole is split into two poles on different Riemann sheet
- Pole positions are somewhat different from Breit-Wigner parameters of BESIII analysis
 - \rightarrow possibly artifact of using Breit-Wigner parameters to define M and Γ

Pole locations from 50 bootstrap fits

Three-body unitary coupled-channel analysis of radiative J/ψ decays

Data : Dalitz plots from BESIII energy dependent solution on $J/\psi \rightarrow \gamma \eta (1405/1475) \rightarrow \gamma (K_S K_S \pi^0)$ Additional data : Branching ratios for $\eta \pi \pi$ and $\pi \pi \gamma$ final states relative to $K \overline{K} \pi$ final state

- The data are well fitted
- Isospin-violating $\pi\pi\pi$ final states are well predicted (lineshape, branching fractions)
- $\eta(1405/1475)$ poles are determined for the first time

First-ever pole determination based on a manifestly three-body unitary coupled-channel framework applied to experimental Dalitz plot distributions

previous Dalitz plot analyses \rightarrow isobar models, two-body unitary models

Possible future developments

- Extend coupled-channel analysis to include more quantum numbers (e.g., f_1 , f_2 for $J/\psi \rightarrow \gamma(K_S K_S \pi^0)$)
- \rightarrow directly fit experimental data (not MC outputs), consistently determine $\eta(1405/1475)$ and $f_1(1420)$ poles
- High-precision data of various processes involving $\eta(1405/1475)$ are expected in the near future

Radiative J/ψ decays to $K\overline{K}\pi$, $\eta\pi\pi$, $\rho^0\gamma$, 4π , etc. via $\eta(1405/1475)$ χ_{cJ} decays involving $\eta(1405/1475)$ and more...

 \rightarrow Combined analysis is important to fully understand $\eta(1405/1475)$ (standard in N* physics)

$a_0(980)$ model

Relative coupling strengths of $a_0(980) \rightarrow \pi\eta$ and $a_0(980) \rightarrow K\overline{K}$ in our model

 $|g_{a_0 \to \pi\eta}| \sim |g_{a_0 \to K\overline{K}}|$ based on Abele et al. PRD 57, 3860 (1998) analyzing $p\overline{p} \to K\overline{K}\pi, \eta\pi\pi$

Alternative choice:

 $2 \times |g_{a_0 \to \pi \eta}| \sim |g_{a_0 \to K\overline{K}}|$ based on Lu and Moussallam EPJC 80, 436 (2020) analyzing $\gamma \gamma \to K\overline{K}$, $\eta \pi$

Model-dependence should be checked \rightarrow future work

Somewhat larger $a_0\pi$ contribution is expected in $J/\psi \rightarrow \gamma \eta (1405/1475) \rightarrow \gamma (K_S K_S \pi^0)$

Final $Rc = K^*\overline{K}$, $a_0\pi$, $\kappa\overline{K}$ contributions are separately shown default is coherent sum of all final Rc channels

We show contributions from single triangle diagrams

We discuss how the $a_0(980)$ -like peak is created from $K^*\overline{K}$ and \overline{K}^*K interference

Fit with one bare η^* model

Single-pole solution was proposed for $\eta(1405/1475)$; should be checked One-bare model is fitted to $K_S K_S \pi^0$ invariant mass distribution Flat peak structure (with shallow dip) is not well reproduced by the one-bare model

 \rightarrow two bare states necessary

Prediction of $\pi\pi\pi$ **lineshape in** $J/\psi \rightarrow \gamma\eta(1405/1475) \rightarrow \gamma(\pi\pi\pi)$

We discuss main mechanisms for the isospin-violating process

Fig.14(C)

39

Our unitary coupled-channel model

 $\eta(1405/1475)$ as two bare states mixed and dressed by meson-meson continuum

1401 - 33i, 1495 - 43i MeV

Dressed η^* propagator G_{ij}

$$[G^{-1}(E)]_{ij} = (E - m_{\eta_i})\delta_{ij} - \Sigma_{ij}(E) \qquad (E = m_{K_SK_S\pi^0})$$

bare mass for η_i^* self energy of η_1^* , η_2^*

+ Infinite loops (η^* appears at both ends; no intermediate η^*)

Two-meson scattering models

 \rightarrow T = V + VGT

Two-meson scattering models

Two-meson scattering models

