Search for *CP* violation at Belle by measuring *T*-odd triple-product asymmetries in charm multi-body decays

Longke LI (李龙科) On behalf of the Belle Collaboration

University of Cincinnati (UC)

11th International Workshop on Charm Physics (CHARM 2023) July 17, 2023

(日) (日) (日) (日) (日) (日) (日) (日) (日)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ■ ■ ● ● ●

Summary

Belle experiment at KEKB

- KEKB (1999-2010), located in Tsukuba, is an asymmetric-energy e^+e^- collider operating at or near \sqrt{s} =10.58 GeV.
- It reached highest peak luminosity $2.1 \times 10^{34} \ cm^{-2} s^{-1}$ (former world record, already excessed by SuperKEKB).
- Belle detector has good performances on momentum/vertex resolution; particle identification (up to 3.5 GeV/c), etc.

$(D^+, D_s^+) \rightarrow K_S^0 K^+ h^+ h^-$

 $(D^+, D_s^+) \rightarrow K^{\pm} h^{\pm} \pi^+ \pi^0$

Charm production at Belle and Belle II

- Belle (II) has two ways to produce the charm sample: $e^+e^- o car c$ ($\sigma=1.3~{
 m nb}$) and b o c transition.
- Belle accumulated a dataset of $\sim 1 \text{ ab}^{-1}$, which provides a large $B\overline{B}$ sample (772 millions), and also a large charm sample to study charm physics, e.g. $N_{\text{prod}}^{D^+} \sim \mathcal{O}(10^9)$, $N_{\text{prod}}^{\Lambda_c^+} \sim \mathcal{O}(10^8)$, etc.

 $(D^+, D_s^+) \rightarrow K^\pm h^\pm \pi^+ \pi^0$

Charm publications in 2022(3) at Belle and Belle II

- Belle finished its final data accumulation > 13 years ago, but is lasting to produce fruitful physical results. The recent charm results (not covering charmonium) from Belle (II) are listed below.
- Here I talk about the recent $a_{CP}^{T-\text{odd}}$ results of several $D_{(s)}^+$ decays at Belle.

```
(Belle II) D_{\epsilon}^{+} lifetime
                                                                                            arXiv:2306.00365
a_{CP}^{\text{T-odd}} and \mathcal{B} of D_{(\epsilon)}^+ \to K^\pm h^\mp \pi^+ \pi^0
                                                                                            arXiv:2305.12806, PRD 107, 033003 (2023)
a_{CP}^{\text{T-odd}}(D_{(s)}^+ \to K^+ \check{K}_{S}^0 h^- \pi^+) \text{ and } \mathcal{B}(D_s^+ \to K^+ K^- K_{S}^0 \pi^+)
                                                                                            arXiv:2305.11405
(Belle II) Novel method for tagging D^0 flavor
                                                                                            PRD 107, 112010 (2023)
M/\Gamma of \Lambda_c(2625)^+
                                                                                            PRD 107. 032008 (2023)
\Lambda \pi^{\pm} signals near \overline{K}N(I=1) in \Lambda_c^+ \to \Lambda \pi^+ \pi^+ \pi^-
                                                                                            PRL 120, 151903 (2023)
\mathcal{B} \text{ of } \Lambda_c^+ 	o p K_{
m S}^0 K_{
m S}^0 \text{ and } \Lambda_c^+ 	o p \breve{K_{
m S}^0} \eta
                                                                                            PRD 107, 032004 (2023)
\mathcal{B} \text{ of } \Omega^0_c \to \Xi^- \pi^+, \ \Xi^- K^+, \ \Omega^- K^+
                                                                                            JHEP 01, 055 (2023)
a threshold cusp at \Lambda \eta in \Lambda_c^+ \to p K^- \pi^+
                                                                                            arXiv:2209.00050 (accepted by PRD)
\mathcal{B}/\alpha of \Lambda_c^+ \to \Sigma^+(\pi^0, \eta, \eta')
                                                                                            PRD 107. 032003 (2023)
\mathcal{B}/A_{CP}^{\mathrm{dir}}/\alpha/A_{CP}^{\alpha} of \Lambda_{c}^{+} \to \Lambda h^{+}, \Sigma^{0}h^{+}
                                                                                            Science Bulletin 68 (2023) 583-592
(Belle II) \Omega^0_{c} lifetime
                                                                                            PRD 107, L031103 (2023)
\mathcal{B}/a_{CP}^{T\text{-odd}}/A_{CP} of D^0 \to K_S^0 K_S^0 \pi^+ \pi^-
                                                                                            PRD 107. 052001 (2023)
\mathcal{B} of D^+ \to K^- K_{\rm s}^0 \pi^+ \pi^+ \pi^0
                                                                                            arXiv:2207.06595
(Belle II) \Lambda_{c}^{+} lifetime
                                                                                            PRL 130, 071802 (2023)
\mathcal{B} of \Lambda^+_c \to \Sigma^+ \gamma and \Xi^0_c \to \Xi^0 \gamma
                                                                                            PRD 107, 032001 (2023)
\Lambda_c(2910)^+ in B \rightarrow \Sigma_c(2455)\pi p
                                                                                            PRL 130, 031901 (2023)
\mathcal{B} of \Xi_c^0 \to \Lambda_c^+ \pi^-
                                                                                            PRD 107, 032005 (2023)
\mathcal{B} of \Lambda_c^+ \to p\eta'
                                                                                            JHEP 03 (2022) 090
\mathcal{B} of \Xi_{c}^{0} \to \Lambda K_{c}^{0}, \Sigma^{0} K_{c}^{0}, and \Sigma^{+} K^{-}
                                                                                            PRD 105. L011102 (2022)
                                                                                                                                                    ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のQ@
```


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ■ ■ ● ● ●

$a_{CP}^{T-\text{odd}}$ with T-odd correlations for charm multi-body decays

00000

- ▶ T-odd correlations provides a powerful tool to indirectly search for CP violation under CPT symmetry conservation:
- ▶ C_T observable defined by a triple mixed product $C_T = (\vec{p}_1 \times \vec{p}_2) \cdot \vec{p}_3$, satisfying $CP(C_T) = -C(C_T) = -\overline{C}_T$. Define T-odd asymmetries for $D^+_{(s)}$ or $D^-_{(s)}$ decays:

$$A_{\mathcal{T}} = \frac{\Gamma_+(\mathcal{C}_{\mathcal{T}} > 0) - \Gamma_+(\mathcal{C}_{\mathcal{T}} < 0)}{\Gamma_+(\mathcal{C}_{\mathcal{T}} > 0) + \Gamma_+(\mathcal{C}_{\mathcal{T}} < 0)} \quad \overline{A}_{\mathcal{T}} = \frac{\Gamma_-(-\overline{\mathcal{C}}_{\mathcal{T}} > 0) - \Gamma_-(-\overline{\mathcal{C}}_{\mathcal{T}} < 0)}{\Gamma_-(-\overline{\mathcal{C}}_{\mathcal{T}} > 0) + \Gamma_-(-\overline{\mathcal{C}}_{\mathcal{T}} < 0)}$$

In $B \to VV$, these A_T are $\propto \sin(\phi + \delta)$ and $\propto \sin(-\phi + \delta)$, respectively^[1].

► T-odd *CP* asymmetry is defined as (to veto FSI effects):

$$\left| egin{aligned} {a}_{CP}^{\mathsf{T} ext{-odd}} = rac{1}{2} (oldsymbol{A}_{\mathcal{T}} - \overline{oldsymbol{A}}_{\mathcal{T}})
ight|$$
 can be nonzero if CPV

 $\propto \sin\phi\cos\delta$ for $B \to VV^{[1]}$: largest value when $\delta = 0$, vs. $A_{C\!P}^{
m dir}
eq 0$ needs $\delta
eq 0$,

Status of a^T-odd</sup> measurements in charmed mesons decay-rates:

[2] K. Prasanth *et al.* (Belle Collab.), Phys. Rev. D **95**, 091101(R) (2017) [3] R. Asii *et al.* (LHCb Collab.), IHEP 10, 5 (2014)

[5] J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 622, 239 (2005)
 [6] J.P. Lees et al. (BaBar Collab.), Phys. Rev. D 84, 031103(R) (2011)

Belle and Belle II may improve some of these $a_{CP}^{T-\text{odd}}$ results and measure $a_{CP}^{T-\text{odd}}$ in more channels based on the large charm sample.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□≥ ● ののの

Summarv

Measurement of $a_{CP}^{T- ext{odd}}$ for $D^+_{(s)} o K^0_S K^+ h^+ h^-$ arXiv:2305.1140

00000

- The $a_{C}^{T,odd}$ values of singly Cabibbo-suppressed (SCS) decay $D^+ \rightarrow K_S^0 K^+ \pi^+ \pi^-$ and Cabibbo-favored (CF) decay $D_s^+ \rightarrow K_S^0 K^+ \pi^+ \pi^-$ were measured at FOCUS^[5] and BABAR^[6].
- We also measured them using the full Belle dataset (980 fb⁻¹). The data sample is divided into four subsamples (with yields):

•
$$D_{(s)}^+$$
, $C_T > 0$ (N_1); $D_{(s)}^+$, $C_T < 0$ (N_2)
• $D_{(s)}^-$, $-\overline{C}_T > 0$ (N_3); $D_{(s)}^-$, $-\overline{C}_T < 0$ (N_4)

- To suppress the background, we optimize the requirements of the *D* decay length significance, scaled momentum, vertex fit quality, a etc. for each decay modes.
- We perform a binned maximum likelihood fit simultaneously to these M(D) distributions of four subsamples.
- Instead of four yields, we float $N(D_{(s)}^{\pm})$, A_T and $a_{CP}^{T-\text{odd}}$:

$$\begin{split} & N_1 = N(D^+_{(s)}) \frac{1 + A_T}{2}, \quad N_3 = N(D^-_{(s)}) \frac{1 + A_T - 2 \cdot a_{CP}^{T-\text{odd}}}{2}, \\ & N_2 = N(D^+_{(s)}) \frac{1 - A_T}{2}, \quad N_4 = N(D^-_{(s)}) \frac{1 - A_T + 2 \cdot a_{CP}^{T-\text{odd}}}{2}. \end{split}$$

B

1.0

Charm at Belle experiment

 $(D^+, D_s^+) \rightarrow K_S^0 K^+ h^+ h^-$

 $(D^+, D_s^+) \rightarrow K^{\pm} h^{\pm} \pi^+ \pi^0$

Measurement of $a_{CP}^{T-\text{odd}}$ for $D_{(s)}^+ \to K_S^0 K^+ h^+ h^-$ arXiv:2305.11405

Longke LI (李龙科), Univ. of Cincinnati

Charm CPV at Belle by measuring *T*-odd triple-product asymmetrie

First measurement of $\mathcal{B}(D_s^+ \to K_s^0 K^+ K^- \pi^+)$ arXiv:2305.11405

0000

- We report the first observation of (SCS) $D_s^+ \to K_s^0 K^+ K^- \pi^+$ with significance of 9.2σ .
- Using (CF) $D_s^+ \rightarrow K_s^0 K^+ \pi^+ \pi^-$ as a normalization mode $(N_{\text{sig}} = 70080 \pm 676)$, we measured the relative \mathcal{B} .
- To take into account variation in reconstruction efficiencies due to unknown intermediate resonances, we correct the fitted yield for efficiency in bins of five-dimensional phase space.
- Finally we have

$$\frac{\mathcal{B}(D_{s}^{+} \to K_{s}^{0}K^{+}K^{-}\pi^{+})}{\mathcal{B}(D_{s}^{+} \to K_{s}^{0}K^{+}\pi^{+}\pi^{-})} = (1.36 \pm 0.15_{\text{stat.}} \pm 0.04_{\text{syst.}})\%$$

• Inserting the W.A. $\mathcal{B}(D_s^+ \to K_s^0 K^+ \pi^+ \pi^-) = (0.95 \pm 0.08)\%$, we obtain $\mathcal{B}(D_s^+ \to K_s^0 K^+ K^- \pi^+) = (1.29 \pm 0.14 \pm 0.04 \pm 0.11) \times 10^{-4}$

$$\begin{array}{l} \hline & \text{Charm at Belle experiment} \\ \hline & a_{CP}^{T\text{-odd}}(D^+_{(s)} \to K^0_S K^+ h^+ h^-) \text{ and } \mathcal{B}(D^+_s \to K^0_S K^+ K^- \pi^+) \\ \hline & a_{CP}^{T\text{-odd}} \text{ and } \mathcal{B} \text{ of } D^+_{(s)} \to K^{\pm} h^{\pm} \pi^+ \pi^0 \\ \hline & \text{Summary} \end{array}$$

Charm at Belle experiment

$(D^+, D_s^+) \rightarrow K_S^0 K^+ h^+ h^-$

 $(D^+, D_s^+) \rightarrow K^{\pm} h^{\pm} \pi^+ \pi^-$ 0000

Measurement of $a_{CP}^{T-\text{odd}}$ for $D_{(s)}^+ \to K^\pm h^\pm \pi^+ \pi^0$ arXiv:2305.1280

• Our a_{CP}^{T-odd} results compared with other charm results from experiments. All D mesons have reached precision of $\mathcal{O}(10^{-3})$. The decays cover CF, SCS, and doubly Cabibbo-suppressed (DCS) decays.

B

$a_{CP}^{T ext{-odd}}$ in subregions of PHSP for $D^+_{(s)} o K^\pm h^\pm \pi^+ \pi^0$ arXiv:2305.1280

 $(D^+, D_s^+) \rightarrow K_S^0 K^+ h^+ h^-$

	$D^+ ightarrow ar{K}^{*0} K^*$	+ D ⁻	$ ightarrow K^{*0}K^{*-}$
Events(2 MeV/2) 5000 1	> 0 C _T <		
9.a	1.85 N(D ⁺) (GeV/c ²) M	1.85 1.9 1.8 1.85 1.9 (D ⁺) (GeV/ <i>c</i> ²) M (<i>D</i> [*]) (GeV/ <i>c</i> ²)	1.8 1.85 1.9 M(<i>D</i> [*]) (GeV/ <i>c</i> ²)
5 .	apapatipenghenateralen bahagenta		rayan anang ang ang ang ang ang ang ang ang
Subregion	$D^+_{(s)} o VV$	Signal region (SR)	$a_{CP}^{T ext{-odd}}$ (×10 ⁻²)
(1) SCS	$D^+ o \phi ho^+$	ϕ -SR, $ ho^+$ -SR	$0.85 \pm 0.95 \pm 0.25$
(2) SCS	$D^+ o ar{K}^{*0} K^{*+}$	$\mathcal{K}^{*(0,+)} ext{-}SR$, veto $\phi ext{-}SR$	$0.17 \pm 1.26 \pm 0.13$
(3) CF	$D^+ o ar{K}^{*0} ho^+$	κ^{*0} -SR, $ ho^+$ -SR	$0.25 \pm 0.25 \pm 0.13$
(4) SCS	$D^+_s o K^{*0} ho^+$	$\mathcal{K}^{*0} ext{-}SR$, $ ho^+ ext{-}SR$	$6.2\ \pm 3.0\ \pm 0.4$
(5) SCS	$D^+_s o K^{*+} ho^0$	$\mathcal{K}^{*+} ext{-}SR$, $ ho^{0} ext{-}SR$	$1.7\ \pm 6.1\ \pm 1.5$
(6) CF	$D^+_s o \phi ho^+$	$\phi ext{-SR},~ ho^+ ext{-SR}$	$0.31 \pm 0.40 \pm 0.43$
	$D^+ \rightarrow \overline{K}^{*0} K^{*+}$	K*(0,+)-SR veto <i>b</i> -SR	$0.26 \pm 0.76 \pm 0.37$

\mathcal{B} of Cabibbo-suppressed decays $D^+_{(s)} \to K^\pm h^\pm \pi^+ \pi^0$ Phys. Rev. D 107. 033003 (2023)

• Three Cabibbo-suppressed decays

and reference modes (using same cut criteria as signal modes):

• Based on the efficiency-corrected yields, we obtain three relative $\mathcal{B}_{sig}/\mathcal{B}_{ref}$ values. e.g. $\frac{\mathcal{B}(D^+ \rightarrow K^+ \pi^- \pi^+ \pi^0)}{\mathcal{B}(D^+ \rightarrow K^- \pi^+ \pi^0)} = (1.68 \pm 0.11 \pm 0.03)\%$ corresponds to (5.83 ± 0.42) tan⁴ θ_C . This ratio is significantly larger than all other known DCS/CF ratios. This confirms BESIII's discovery of this anomaly ratio PRL 125, 141802 (2020), PRD 104, 072005 (2021)

0000

Summarv

• using the W.A. \mathcal{B}_{ref} , we have three absolute \mathcal{B} results: $\mathcal{B}(D^+ \to K^+ K^- \pi^+ \pi^0) =$ $(7.08 \pm 0.08 \pm 0.16 \pm 0.20) \times 10^{-3}$, $\mathcal{B}(D^+ \to K^+ \pi^- \pi^+ \pi^0) =$ $(1.05 \pm 0.07 \pm 0.02 \pm 0.03) \times 10^{-3}$, $\mathcal{B}(D_s^+ \to K^+ \pi^- \pi^+ \pi^0) =$ $(9.44 \pm 0.34 \pm 0.28 \pm 0.32) \times 10^{-3}$. Most precise to date!

B

うつつ 正面 エヨト エヨト エヨト ショー

• Charm at Belle experiment
•
$$a_{CP}^{T-\text{odd}}(D_{(s)}^+ \to K_S^0 K^+ h^+ h^-) \text{ and } \mathcal{B}(D_s^+ \to K_S^0 K^+ K^- \pi^+)$$

• $a_{CP}^{T-\text{odd}} \text{ and } \mathcal{B} \text{ of } D_{(s)}^+ \to K^{\pm} h^{\pm} \pi^+ \pi^0$
• Summary

 $(D^+, D_s^+) \to K^{\pm} h^{\pm} \pi^+ \pi^0$

Summary

- Belle finished her data accumulation 13 years ago, but is still lasting to produce lots of charm results to date.
- Recently searches for *CP* violation via *T*-odd correlations in eight $D^+_{(s)}$ decays (three SCS / four CF / one DCS) were reported, along with most precise measurements of branching fractions of four $D^+_{(s)}$ decays.
- Belle did make the significant contributions to $a_{CP}^{T\text{-odd}}$ results for all measured charm decays.
- The precisions of $a_C^{T\text{-odd}}$ results for various charmed mesons have reached $\mathcal{O}(0.1\%).$
- More charm CPV results are promising in the future, based on Belle and Belle II available datasets (totally 1.4 ab⁻¹), and Belle II final targeted dataset (50 ab⁻¹). Please stay tuned.

ELE DQC

イモトイモト

Back up

Thank you for your attentions.

谢谢!

Dr. Longke LI (李龙科) Department of Physics, University of Cincinnati (UC) [1] lilongke_ustc [2] lilk@ucmail.uc.edu

Longke LI (李龙科), Univ. of Cincinnati

-

B

Available Charm samples from Charm factories, B-factories, hadron colliders

Experiment	Machine	Operation	C.M.	Lumin.	N _{prod}	Efficiency	Characters		
CLEO	$\begin{array}{c} CESR \\ (e^+e^-) \end{array}$	CESR (e^+e^-)	CESR (e^+e^-)	2003-2008	3.77	$0.8~{\rm fb}^{-1}$	$D^0:\ 3 imes 10^6\ D^+:\ 2 imes 10^6$		extremely clean environment pure D-beam, almost no bkg
			4.18 GeV	$0.6 \ fb^{-1}$	$D_s^+:~6 imes 10^5$	~10-30%	© quantum coherence		
<mark>₿€</mark> SⅢ	BEPC-II (e ⁺ e ⁻)	2010-2011(2021-)	3.77 GeV	$2.92 (\rightarrow 20)~fb^{-1}$	$D^0: \ 10^7 (ightarrow 10^8) \ D^+: \ 10^7$	10.0070	In CM boost, no T-dep analyses		
		2016-2019 2014+2020	4.18-4.23 GeV 4.6-4.7 GeV	7.3 fb^{-1} 4.5 fb^{-1}	$D_s^+:~5 imes 10^6\ \Lambda^+:~?~{\sf M}$				
					້ ★	***			
B	${f SuperKEKB}\ (e^+e^-)$	2019-	10.58 GeV	424(\rightarrow 50000) fb $^{-1}$	$D^0:\ 6 imes 10^8\ (o 10^{11})\ D^+_{(s)}:\ 10^8\ (o 10^{10})$		 clear event environment high trigger efficiency 		
BELLE	КЕКВ (e ⁺ e ⁻)	1999-2010	10.58 GeV	$1000 \ {\rm fb}^{-1}$	$egin{array}{c} \Lambda_c^+\colon 10^7 \ (o 10^9) \ D^0\colon 10^9 \ D^+_{(s)}\colon 10^9 \ \Lambda_c^+\colon 10^8 \ \Lambda_c^+\colon 10^8 \end{array}$	\sim 5-10%	 high-efficiency detection of neutrals many high-statistics control samples time-dependent analysis smaller cross-section than pp collide 		
*	PEP-II (e ⁺ e ⁻)	1999-2008	10.58 GeV	500 fb ⁻¹	$6 imes 10^8$				
					**	**			
Chick Chic Chich C	Tevatron $(p\overline{p})$	2002-2011	1960	9.6 fb ⁻¹	10 ¹¹		 very large production cross-section large boost 		
	LHC (pp)	2011 7 TeV 1.0 fb ⁻¹ 2012 8 TeV 2.0 fb ⁻¹	1.0 fb^{-1} 2.0 fb ⁻¹	$5 imes 10^{12}$	<0.5%	excellent time resolution edicated trigger required			
	() ()	2015-2018	13 TeV	6 fb^{-1}	1013	10 ¹³	00		
					***	*			

Here uses $\sigma(D^0 \overline{D^0} @3.77 \text{ GeV})=3.61 \text{ nb}$, $\sigma(D^+D^-@3.77 \text{ GeV})=2.88 \text{ nb}$, $\sigma(D_s^* D_s @4.17 \text{ GeV})=0.967 \text{ nb}$; $\sigma(c\bar{c}@10.58 \text{ GeV})=1.3 \text{ nb}$ where each $c\bar{c}$ event averagely has 1.1 D^0 yields, 0.6 D^+ yields and 0.3 D_s^+ yields; $\sigma(D^0@CDF)=13.3 \mu$ b, and $\sigma(D^0@LHCb)=1661 \mu$ b, mainly referred to *Int. J. Mod. Phys. A* **29** (2014) 24, 14300518.

Systematic uncertainties for $a_{CP}^{T-\text{odd}}(D_{(s)}^+ \to K_S^0 K^+ h^+ h^-)$ and $a_{CP}^{T-\text{odd}}(D_{(s)}^+ \to K^\pm h^\pm \pi^+ \pi^0)$

Table: Systematic uncertainties for
$$a_C^{T-\text{odd}}$$
 in % for
(a) $D^+ \rightarrow K_S^0 K^+ \pi^+ \pi^-$; (b) $D_s^+ \rightarrow K_S^0 K^+ K^- \pi^+$; and
(c) $D^+ \rightarrow K_S^0 K^+ \pi^+ \pi^-$.

Source	(a)	(b)	(c)
Fit model	0.01	0.02	0.12
Detector bias	0.32	0.32	0.32
Efficiency variation with C_T, \overline{C}_T	0.03	0.20	0.06
Total syst.	0.32	0.38	0.35

Table: Systematic uncertainties for $a_{CP}^{T-\text{odd}}$ in % for five $D_{(s)}^+$ decays: (a) $D^+ \to K^+ K^- \pi^+ \pi^0$; (b) $D^+ \to K^+ \pi^- \pi^+ \pi^0$; (c) $D^+ \to K^- \pi^+ \pi^+ \pi^0$; (d) $D_s^+ \to K^+ \pi^- \pi^+ \pi^0$; and (e) $D_s^+ \to K^+ K^- \pi^+ \pi^0$.

Decay channel	(a)	(b)	(c)	(d)	(e)
C_T -dependent efficiency	0.13	0.02	0.08	0.02	0.41
C_T resolution	0.01	0.06	0.01	0.07	0.02
PDF parameters	0.01	0.07	0.01	0.07	0.04
Mass resolution	0.03	0.01		0.02	0.11
Fit bias	0.01	0.07	0.00	0.06	0.02
Total syst.	0.13	0.12	0.08	0.12	0.43

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ めぬ⊙