Charm Physics

From Standard Model to New Physics

Svjetlana Fajfer
Physics Department, University of Ljubljana and
Institute J. Stefan, Ljubljana, Slovenia

17-21 Jul 2023, Siegen

c-QUARK MASS	$1.27 \pm 0.02 \mathrm{GeV}$
m_{c} / m_{s} MASS RATIO	$11.76_{-0.10}^{+0.05}$
m_{b} / m_{c} MASS RATIO	4.58 ± 0.01
$m_{b}-m_{c}$ QUARK MASS DIFFERENCE	$3.45 \pm 0.05 \mathrm{GeV}$

Charm - theory predictions

- 1964, James Bjorken and Sheldon Glashow speculated on "charm" as a new quantum number
- In 1970, Glashow, John lliopoulos, and Luciano Maiani proposed a new quark classified by the charm quantum number. The charmed quark could provide a mechanism - the GIM mechanism

Weak Interactions with Lepton-Hadron Symmetry*

S. L. Glashow, J. Inoroulos, and L. Maiant

Lyman Laboralory of Physics, Harvard Uniousily, Cambridge, Massachuseits 02130 (Received 5 March 1970)

We propose 2 model of weak interactions in which the currents are constructed out of four basic quark felds and interact with a charged massive vector boson. We show, to all orders in perturbation theory, that the leading divergences do not violate any strong-interaction symmetry and the next to the leading divergences respect all observed weak-interaction selection rules. The model features a remarkable symmetry between leptons and quarks. The extension of our model to a complete Yang-Milis theory is discussed.

GIM mechanism

$$
K^{0} \rightarrow \mu^{+} \mu^{-}
$$

$$
K^{0} \leftrightarrow \bar{K}^{0}
$$

Why this decay amplitude is suppressed!

- vanishes for $\mathrm{m}_{\mathrm{c}}=\mathrm{m}_{u}$
- finite amplitude of order $\mathrm{m}_{\mathrm{c}}{ }^{-}-\mathrm{m}_{\mathrm{u}}{ }^{2} \approx(3-4 \mathrm{GeV})^{2}$ (loffe and Shabalin)
- prediction for charm quark mass $m_{c} \simeq 1.5 \mathrm{GeV}$

Why important?

- Help to establish weak interactions quark left-handed doublets
- Quark-lepton symmetry
- Quark mixing matrix U is real, due to suitable redefinitions of the relative phases of the quarks makes U real and orthogonal (Cabibbo angle); no CP violation
- Charmed particles should be found!
- GIM: FCNC processes arise to order $\mathcal{O}\left(m_{c}^{2}\right)$
J / Ψ discovery
BNL: J.J. Auber et al, PRL 33 (1974) 1404
SLAC: J.-E. Augustin et al, PRL (1974) 1406

1976 Nobel prize in Physics

$$
\begin{aligned}
& m(J / \psi)=3096.9 \pm 0.006 \mathrm{MeV} \\
& \Gamma(J / \psi)=92.6 \pm 1.7 \mathrm{keV} \\
& I^{G}\left(J^{P C}\right)=0^{-}\left(1^{--}\right)
\end{aligned}
$$

Burton Richter Samuel Chao Chung Ting

Exotic multi-quark states

$$
X(3872), X(3915), Y(4220), Z_{c}(3900), Z_{c}(4020), Z(4430) \ldots
$$

From M. Petran et al, Computer Physics Communications 185, (2014), 2056

SM interactions in CHARM PHYSICS

Hadronic spectra

Gell-Mann (1964)
The idea of quarks, with mesons as $q^{-} q$ and baryons as qqq. He also pointed out the possibility of multiquark states $q^{-} q^{-} q q$ mesons and q-qqqq baryons.
R.R Jaffe (1977)

Multi-Hadrons - MIT bag model

"Multiquark states with heavy quarks are very different. This is where QCD dynamics enters. To paraphrase Orwell: all quarks are equal, but the heavy quarks are more equal then others." Brambilla et al., 2203.16583

$$
m_{Q} \rightarrow \infty
$$

short-distance physics

$$
\text { perturbation theory }+R G E
$$

$\mathcal{L}_{\infty}=\bar{h}_{v} i v \cdot D h_{v}$
long-distance physics
non-perturbative techniques
 $i \Longrightarrow j=i{ }^{\varepsilon^{2} v^{\alpha}\left(t_{a}\right)_{j i}}$

- theoretical frameworks for exotics rely in one way or another on $\Lambda_{\mathrm{acc}} / \mathrm{m}_{\mathrm{b}, \mathrm{c}} \ll 1$
- Being heavy $m_{b, c}$ can be treated as nonrelativistic, (potential models, lattice calculations)
- The scale $m_{b, c}$ is heavy enough to belong to the asymptotic freedom region of QCD, allowing for an operator expansion in powers of $1 / m_{b, c}$ (heavy-quark spin effective theory, QCD sum rules)
- the internal structure of many such heavy-light systems likely provides a natural mechanism resulting in a narrow width
- the attraction between two heavy quarks scales like $\alpha_{s}{ }^{2} m_{Q}$, growing approximately linearly with the heavy quark mass
- advantage of having heavy quarks c and b in muliti-quark states:
the large mass of the heavy quarks greatly reduces their kinetic energy, making it easier for them to form multiquark clusters with the light quarks.

Charmonium(like) resonances and bound states

Lattice QCD: nonperturbative approach to QCD

$$
\bar{D}_{s} D_{s} J^{P}=0^{+}
$$

likely related to X(3915) / ХC0 (3930)
[BaBar, LHCb 2009.00026]; explaining why it has narrow width to DD. Predicted by Lebed, Polosa 1602.08421

$$
\bar{D} D J^{P}=0^{+}
$$

predicted in models [Oset et al, 0612179 PRD, Hildago Duque et al 1305.4487, Baru et al 1605.09649 PLB]
seen in dispersive analysis of exp. data [Deineka, Danilkin et al 2111.15033]

Prelovsek, Collins, Padmanath, Mohler, Piemonte 2011.02541, 1905.03506, 2111.02934

Doubly charm tetraquark T_{cc} from lattice QCD

Molecules or diquarks?

likely dominant

Padmanath, Prelovsek: 2202.101101

See talks He, Ortega

Theoretical predictions for T_{cc} mass $\left(\mathrm{I}=0, \mathrm{~J}^{\mathrm{P}}=1^{+}\right)$

Nature 608, pages 483-487 (2022) NNPDF Collaboration

NNPDF:
Univ. Cambridge, Edinburgh, Milan- INFN, Nikhef and VU Univ. Amsterdam, Univ. Torino, NUS Singapore, Univ. Wirzburg

- intrinsic charm content of proton by exploiting a high-precision determination of the quark-gluon content;
- remarkable agreement with model predictions (Brodsky et al., 1980, Hobbs et al.,2014);
- these findings are compared to very recent data on Z-boson production with charm jets from the Large Hadron Collider beauty (LHCb) experiment;
- charm PDF are obtained from hard-scattering global dataset, using perturbative QCD calculations, accommodating massive quarks inside the proton and machine learning techniques;
- next-to-next-to-leading order (NNLO) in an expansion in powers of the strong coupling, α_{s}, are performed

It is intrinsic to distinguish it from that computable in perturbation theory, which originates from QCD radiation

the PDFs of the 3FNS, only the three lightest quark flavours are radiatively corrected the purely intrinsic (3FNS) result (blue) with PDFU alone, compared to the 4FNS PDF, which includes both an intrinsic and a radiative component, at $Q=m c=1.51$ GeV (orange). The purely intrinsic (3FNS) result obtained using N3LO matching is also shown (green). (FNS - flavour number scheme)

$$
q^{2}=100 \mathrm{GeV}^{2}
$$

MMHT PDFs

Following Martin, Motylinski, Harland-Lang, Thorne (MMHT) 1704.00162

- charm PDF, by indirect constraints from high-precision LHC data, is consistent with direct constraints from both EMC charm production data (40 years ago), and recent $Z+$ charm production data in the forward region from LHCb.
- local significance for intrinsic charm in the large-x region just above the 3σ level.

Charmed hadrons lifetimes

Heavy quark expansion

Experimentally established hierarchy for charmed baryons

$$
\tau\left(\Xi_{c}^{0}\right)<\tau\left(\Lambda_{c}^{+}\right)<\tau\left(\Omega_{c}^{0}\right)<\tau\left(\Xi_{c}^{+}\right) \quad \text { Dulibic et al., } 2305.02243
$$

QCD in electroweak interactions of charm

- Charge current decays: leptonic and semileptonic
- FCNC processes, D mixing and rare decays
- Nonleptonic decays and CP asymmetry

Short distance dynamics $\mathrm{m}_{\mathrm{c}} \gg \Lambda_{\mathrm{QCD}}$,
$\mathrm{m}_{\mathrm{u}, \mathrm{d}, \mathrm{s}}<\Lambda_{\mathrm{QCD}}$

Long distance dynamics
Lattice QCD, if applicable CxPT
HQET difficult to apply, m_{c} not heavy enough $1 / m_{c}$ $\left(1 / m_{c}\right)^{2}, \ldots$ corrections relevant!

Lattice QCD in leptonic and semileptonic

$$
\text { example: } D \rightarrow \pi \ell \nu
$$

Why important?
generic weak process involving hadrons: $($ experiment $)=($ known $) \times($ CKM element $) \times($ had. matrix element $)$

Lattice calculates
D meson's decay constants, D meson $\mathrm{D} \rightarrow \mathrm{P}, \mathrm{V}$ form factors, bag parameters for meson oscillations

$$
\mathcal{B}\left(D_{q}^{+} \rightarrow \ell^{+} \nu_{\ell}\right)=\frac{G_{F}^{2}}{8 \pi} \tau_{D_{q}} f_{D_{q}}^{2}\left|V_{c q}\right|^{2} m_{D_{q}} m_{\ell}^{2}\left(1-\frac{m_{\ell}^{2}}{m_{D_{q}}^{2}}\right)^{2}
$$

PDG 2022

2206.07501 HFLAV

Mode	$\mathcal{B}\left(10^{-4}\right)$	$f_{D}\left\|V_{c d}\right\|(\mathrm{MeV})$	Reference
$\mu^{+} \nu_{\mu}$	$3.95 \pm 0.35 \pm 0.09$	$47.2 \pm 2.1 \pm 0.5 \pm 0.2$	CLEO-c
	$3.71 \pm 0.19 \pm 0.06$	$45.7 \pm 1.2 \pm 0.4 \pm 0.2$	BESIII
	$3.77 \pm \mathbf{0 . 1 7} \pm \mathbf{0 . 0 5}$	$\mathbf{4 6 . 1} \pm \mathbf{1 . 0} \pm \mathbf{0 . 3} \pm \mathbf{0 . 2}$	Average
$\tau^{+} \nu_{\boldsymbol{\tau}}$	$12.0 \pm 2.4 \pm 1.2$	$50.4 \pm 5.0 \pm 2.5 \pm 0.2$	BESIII
$\boldsymbol{\mu}^{+} \boldsymbol{\nu}_{\boldsymbol{\mu}}+\boldsymbol{\tau}^{+} \boldsymbol{\nu} \boldsymbol{\tau}$		$\mathbf{4 6 . 2} \pm \mathbf{1 . 0} \pm \mathbf{0 . 3} \pm \mathbf{0 . 2}$	Average
$e^{+} \nu_{\boldsymbol{e}}$	<0.088 at 90% C.L.		CLEO-c

Reference	Method	N_{f}	$f_{D}(\mathrm{MeV})$	$f_{D_{s}}(\mathrm{MeV})$	$f_{D_{s}} / f_{D}$
Fermilab/MILC 17 [31]	LQCD	$2+1+1$	$212.1(0.3)(0.5)$	$249.9(0.3)(0.3)$	$1.1782(06)(15)^{*}$
ETM 14 [32]	LQCD	$2+1+1$	$207.4(3.7)(0.9)$	$247.2(3.9)(1.4)$	$1.192(19)(11)$
FLAG 21 average [2]	LQCD	$2+1+1$	$212.0(0.7)$	$249.9(0.5)$	$1.1783(16)$
χ QCD 20A [73]	LQCD	$2+1$	$213(5)$	$249(7)$	$1.16(3)$
RBC/UKQCD 18A [74] ${ }^{\dagger}$	LQCD	$2+1$	-	-	$1.1740(51)(68)$
RBC/UKQCD 17 [75]	LQCD	$2+1$	$208.7(2.8)\left({ }_{-1.8}^{+2.1}\right)$	$246.4(1.3)\left({ }_{-1.9}^{+1.3}\right)$	$1.1667(77)\left({ }_{-43}^{+57}\right)$
χ QCD 14 [76]	LQCD	$2+1$	-	$254(2)(4)$	-
HPQCD 12 [77]	LQCD	$2+1$	$208.3(1.0)(3.3)$	-	$1.187(4)(12)$
Fermilab/MILC 11 [78]	LQCD	$2+1$	$218.9(9.2)(6.6)$	$260.1(8.9)(6.1)$	$1.188(14)(21)$
HPQCD 10 [79]	LQCD	$2+1$	-	$248.0(1.4)(2.1)$	-
FLAG 21 average [2]	LQCD	$2+1$	$209.0(2.4)$	$248.0(1.6)$	$1.174(7)$
Pullin 21 [80]	QCD SR		$190(15)$	$226(17)$	$1.19(7)$
Wang 15 [81]		QCD SR		$208(10)$	$240(10)$
Gelhausen 13 [82]	QCD SR		$201\left({ }_{-13}^{+12}\right)$	$238\left({ }_{-23}^{+13}\right)$	$1.15(6)$
Narison 12 [83]	QCD SR		$204(6)$	$246(6)$	$1.21(4)$
Lucha 11 [84]	QCD SR		$206.2(8.9)$	$245.3(16.3)$	$1.193(26)$

$$
f_{D^{+}}=212.0(7) \mathrm{MeV}, \quad f_{D_{s}}=249.9(5) \mathrm{MeV}, \quad \frac{f_{D_{s}}}{f_{D^{+}}}=1.1783(16)
$$

Electromagnetic corrections are very important to achieve the precission.

D_{s} meson radiative form factors

Lattice QCD contributed recently by the D_{s} meson radiative form factors over the full kinematical range
Frezzotti et al., (Rome\& Southampton)
2306.05904

$$
H_{W}^{r \nu}(k, \boldsymbol{p})=\epsilon_{\mu}^{r}(k) H_{W}^{\mu \nu}(k, \boldsymbol{p})=\epsilon_{\mu}^{r}(k) \int d^{4} y e^{i k \cdot y}\langle 0| \hat{\mathrm{T}}\left[j_{W}^{\nu}(0) j_{\mathrm{em}}^{\mu}(y)\right]\left|D_{s}^{+}(\boldsymbol{p})\right\rangle
$$

$$
j_{W}^{\nu}(x)=j_{V}^{\nu}(x)-j_{A}^{\nu}(x)=\bar{\psi}_{s}(x)\left(\gamma^{\nu}-\gamma^{\nu} \gamma_{5}\right) \psi_{c}(x), \quad j_{\mathrm{em}}^{\mu}(x)=\sum_{f} q_{f} \bar{\psi}_{f}(x) \gamma^{\mu} \psi_{f}(x)
$$

$$
\begin{aligned}
H_{W}^{\mu \nu}(k, \boldsymbol{p})= & H_{\mathrm{SD}}^{\mu \nu}(k, \boldsymbol{p})+H_{\mathrm{pt}}^{\mu \nu}(k, \boldsymbol{p}) \\
H_{\mathrm{SD}}^{\mu \nu}(k, \boldsymbol{p})= & \frac{H_{1}\left(p \cdot k, k^{2}\right)}{M_{D_{s}}}\left[k^{2} g^{\mu \nu}-k^{\mu} k^{\nu}\right]+\frac{H_{2}\left(p \cdot k, k^{2}\right)}{M_{D_{s}}} \frac{\left[\left(p \cdot k-k^{2}\right) k^{\mu}-k^{2}(p-k)^{\mu}\right]}{(p-k)^{2}-M_{D_{s}}^{2}}(p-k)^{\nu} \\
& \quad-i \frac{F_{V}\left(p \cdot k, k^{2}\right)}{M_{D_{s}}} \varepsilon^{\mu \nu \gamma \beta} k_{\gamma} p_{\beta}+\frac{F_{A}\left(p \cdot k, k^{2}\right)}{M_{D_{s}}}\left[\left(p \cdot k-k^{2}\right) g^{\mu \nu}-(p-k)^{\mu} k^{\nu}\right] \\
H_{\mathrm{pt}}^{\mu \nu}(k, \boldsymbol{p})= & f_{D_{s}}\left[g^{\mu \nu}+\frac{(2 p-k)^{\mu}(p-k)^{\nu}}{2 p \cdot k-k^{2}}\right],
\end{aligned}
$$

For a real photon ($k^{2}=0$) only $F_{V, A}$ contribute

$$
\operatorname{Br}\left[D_{s} \rightarrow e \nu_{e} \gamma\right]\left(\Delta E_{\gamma}\right) \equiv \frac{\Gamma_{e}\left(\Delta E_{\gamma}\right)}{\Gamma_{\text {tot }}}<1.3 \times 10^{-4}, \quad \Gamma_{\text {tot }}^{-1}=(5.04 \pm 0.04) \times 10^{-13} \mathrm{~s}
$$

$$
E_{\gamma}>\Delta E_{\gamma}=10 \mathrm{MeV}
$$

$\operatorname{Br}(E \gamma>10 \mathrm{MeV})=4.4(3) \times 10^{-6}$ is consistent with the upper bound from the
BESIII experiment $\operatorname{Br}\left(\mathrm{E}_{\gamma}>10 \mathrm{MeV}\right)<1.3 \times 10^{-4}$ at 90% confidence level

References:

- FNAL-MILC 2212.12648
- HPQCD 212104.09883
- ETMC 171706.03017

From Lytle talk at Beauty 2023 continue to improve and lattice errors may become sub-dominant.

- To go beyond this requires adding EM and strong isospin breaking effects.

$$
D-\bar{D} \quad \text { mixing }
$$

$$
M_{12}-\frac{i}{2} \Gamma_{12} \propto\left\langle D^{0}\right| H_{W}^{\Delta c=2}\left|\bar{D}^{0}\right\rangle+\sum_{n} \frac{\left\langle D^{0}\right| H_{W}^{\Delta} c=1|n\rangle\langle n| H_{W}^{\Delta} c=1}{M_{D}-E_{n}+i \epsilon}
$$

short distance

> "Difficult"

- large contribution
- can use the same methods as for B mixing
- BSMs with heavy new particles
can contribute here
"Simple"
- intermediate state can include multiple (>2) hadrons: formalism for multi-hadron states still under development (Hansen \& Sharpe, arXiv:1602.00324, 2016 PRD)

$$
\begin{array}{lll}
& D_{1} & =p\left|D^{0}\right\rangle-q\left|\bar{D}^{0}\right\rangle
\end{array} \quad \text { CP even }
$$

CPV parameters $\quad|q / p| \quad \operatorname{Arg}(q / p) \equiv \phi$,

$$
x=\frac{m_{2}-m_{1}}{2 \Gamma} \quad y=\frac{\Gamma_{2}-\Gamma_{1}}{2 \Gamma}
$$

HFLAV, 2206.07501

$$
\begin{array}{rl|l|l}
A_{D} & \equiv \frac{\Gamma\left(D^{0} \rightarrow K^{+} \pi^{-}\right)-\Gamma\left(\bar{D}^{0} \rightarrow K^{-} \pi^{+}\right)}{\Gamma\left(D^{0} \rightarrow K^{+} \pi^{-}\right)+\Gamma\left(\bar{D}^{0} \rightarrow K^{-} \pi^{+}\right)} & & \text {Decay Mode } \\
A_{K} & \equiv \frac{\Gamma\left(D^{0} \rightarrow K^{+} K^{-}\right)-\Gamma\left(\bar{D}^{0} \rightarrow K^{-} K^{+}\right)}{\Gamma\left(D^{0} \rightarrow K^{+} K^{-}\right)+\Gamma\left(\bar{D}^{0} \rightarrow K^{-} K^{+}\right)} & D^{0} \rightarrow K^{+} K^{-} / \pi^{+} \pi^{-} & \text {Observables } \\
A_{\pi} & \equiv \frac{\Gamma\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)-\Gamma\left(\bar{D}^{0} \rightarrow \pi^{-} \pi^{+}\right)}{\Gamma\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)+\Gamma\left(\bar{D}^{0} \rightarrow \pi^{-} \pi^{+}\right)} & & y_{C P} \\
\hline & A_{\Gamma} & 2 y_{C P}=(|q / p|+|p / q|) y \cos \phi \\
-(|q / p|-|p / q|) x \sin \phi \\
R_{D} & \equiv \frac{\Gamma\left(D^{0} \rightarrow K^{+} \pi^{-}\right)+\Gamma\left(\bar{D}^{0} \rightarrow K^{-} \pi^{+}\right)}{\Gamma\left(D^{0} \rightarrow K^{-} \pi^{+}\right)+\Gamma\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right)} & D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-} & x \\
\hline
\end{array}
$$

 $(x, y)_{\text {BaBar } \pi^{0} \pi^{+} \pi^{-},}\left(R_{M}\right) / 2_{\text {LHCb } K^{+} \pi^{-} \pi^{+} \pi^{-}},\left(R_{M}\right)_{\text {semileptonic }},\left(x^{\prime \prime}, y^{\prime \prime}\right)_{K^{+} \pi^{-} \pi^{0}}{ }^{0},\left(R_{D}, x^{2}, y, \cos \delta, \sin \delta\right)_{\Psi(3770)},\left(R_{D}, A_{D}, x^{\prime 2 \pm}, y^{\prime \pm}\right)_{B a B a r},\left(R_{D}, A_{D}, x^{\prime 2 \pm}, y^{\prime \pm}\right)_{\text {Belle }}$, $\left(R_{D}, x^{\prime 2}, y^{\prime}\right)_{C D F},\left(R_{D}{ }^{ \pm}, x^{\prime 2 \pm}, y^{\prime \pm}\right)_{L H C b},\left(A_{C P}{ }^{k}, A_{C P}{ }^{\pi}\right)_{B a B a r},\left(A_{C P}{ }^{k}, A_{C P}{ }^{\pi}\right)_{B e l l e},\left(A_{C P}{ }^{k}-A_{C P}{ }^{\pi}\right)_{C D F},\left(A_{C P}{ }^{k}-A_{C P}{ }^{\pi}\right)$ LHCb $\left.^{*}{ }^{*}\right),\left(A_{C P}{ }^{k}-A_{C P}{ }^{\pi}\right)$ LHCb(B)$\left.{ }^{0}{ }_{\mu X}\right)$

$$
\begin{aligned}
R_{M} & =\frac{x^{2}+y^{2}}{2} \\
y_{C P} & =\frac{1}{2}\left(\left|\frac{q}{p}\right|+\left|\frac{p}{q}\right|\right) y \cos \phi-\frac{1}{2}\left(\left|\frac{q}{p}\right|-\left|\frac{p}{q}\right|\right) x \sin \phi \\
A_{\Gamma} & =\frac{1}{2}\left(\left|\frac{q}{p}\right|-\left|\frac{p}{q}\right|\right) y \cos \phi-\frac{1}{2}\left(\left|\frac{q}{p}\right|+\left|\frac{p}{q}\right|\right) x \sin \phi
\end{aligned}
$$

Mode	Observable	Values
$D^{0} \rightarrow K^{+} K^{-} / \pi^{+} \pi^{-}$,	$y_{C P}$	$(0.719 \pm 0.113) \%$
ϕK_{S}^{0}	A_{Γ}	$(0.0089 \pm 0.0113) \%$
$D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}[1211]$	x	$\left(0.56 \pm 0.19_{-0.127}^{+0.067}\right) \%$
(Belle: no $C P V)$	y	$\left(0.30 \pm 0.15_{-0.078}^{+0.050}\right) \%$

The Direct CPV

$$
\begin{aligned}
& \mathcal{M}=M_{1} e^{i \delta_{1}}+M_{2} e^{i \delta_{2}} \\
& \overline{\mathcal{M}}\left(D^{0} \rightarrow f\right)\left|\neq|\overline{\mathcal{M}}|\left(D^{0} \rightarrow \bar{f}\right)\right| M_{1}^{*} e^{i \delta_{1}}+M_{2}^{*} e^{i \delta_{2}} \\
& a_{C P}^{d i r}=\frac{|\mathcal{M}|^{2}-|\overline{\mathcal{M}}|^{2}}{|\mathcal{M}|^{2}+|\overline{\mathcal{M}}|^{2}} \\
& a_{C P}^{d i r}=\frac{|\mathcal{M}|^{2}-|\overline{\mathcal{M}}|^{2}}{|\mathcal{M}|^{2}+|\overline{\mathcal{M}}|^{2}}=\frac{2 \mathcal{I}\left(M_{1}^{*} M_{2}\right) \sin \left(\delta_{1}-\delta_{2}\right)}{\left|M_{1}\right|^{2}+\left|M_{2}\right|^{2}+2 \mathcal{R}\left(M_{1}^{*} M_{2}\right) \cos \left(\delta_{1}-\delta_{2}\right)}
\end{aligned}
$$

Amplitude for D^{0}

$$
\begin{aligned}
\mathcal{M}^{S C S}= & \frac{1}{2}\left(V_{c s}^{*} V_{u s}-V_{c d}^{*} V_{u d}\right) M_{T} e^{i \delta}-\frac{1}{2}\left(V_{c b}^{*} V_{u b}\right) M_{P} e^{i \delta^{\prime}} \\
& a_{C P}^{d i r} \simeq\left(6 \times 10^{-4}\right) \sin \left(\delta-\delta^{\prime}\right)\left[\frac{M_{P}}{M_{T}}\right]
\end{aligned}
$$

$$
\begin{array}{llc}
\hline \hline \text { Year } & \text { Experiment } & \text { Results } \\
\hline 2012 & \text { BABAR } & A_{\Gamma}=(+0.09 \pm 0.26 \pm 0.06) \% \\
2021 & \text { LHCb } & \Delta Y(K K)=(-0.003 \pm 0.013 \pm 0.003) \% \\
& & \Delta Y(\pi \pi)=(-0.036 \pm 0.024 \pm 0.004) \% \\
2014 & \text { CDF } & A_{\Gamma}=(-0.12 \pm 0.12) \% \\
2015 & \text { Belle } & A_{\Gamma}=(-0.03 \pm 0.20 \pm 0.07) \% \\
2008 & \text { BABAR } & A_{C P}(K K)=(+0.00 \pm 0.34 \pm 0.13) \% \\
& & A_{C P}(\pi \pi)=(-0.24 \pm 0.52 \pm 0.22) \% \\
2012 & \text { CDF } & \Delta A_{C P}=(-0.62 \pm 0.21 \pm 0.10) \% \\
2014 & \text { LHCb SL } & \Delta A_{C P}=(+0.14 \pm 0.16 \pm 0.08) \% \\
2016 & \text { LHCb prompt } & \Delta A_{C P}=(-0.10 \pm 0.08 \pm 0.03) \% \\
2019 & \text { LHCb SL2 } & \Delta A_{C P}=(-0.09 \pm 0.08 \pm 0.05) \% \\
2019 & \text { LHCb prompt2 } & \Delta A_{C P}=(-0.18 \pm 0.03 \pm 0.09) \% \\
\hline
\end{array}
$$

$$
\begin{aligned}
a_{C P}^{\text {ind }} & =(-0.010 \pm 0.012) \% \\
\Delta a_{C P}^{\text {ir }} & =(-0.161 \pm 0.028) \%
\end{aligned}
$$

In 2014

$$
\begin{aligned}
a_{\mathrm{CP}}^{\mathrm{ind}} & =(0.013 \pm 0.052) \% \\
\Delta a_{\mathrm{CP}}^{\text {dir }} & =(-0.253 \pm 0.104) \%
\end{aligned}
$$

Year	Experiment	Results
2012	Belle prel.	$A_{\Gamma}=(-0.03 \pm 0.20 \pm 0.08) \%$
2012	$B A B A R$	$A_{\Gamma}=(0.09 \pm 0.26 \pm 0.06) \%$
2013	LHCb	$A_{\Gamma}(K K)=(-0.035 \pm 0.062 \pm 0.012) \%$
		$A_{\Gamma}(\pi \pi)=(0.033 \pm 0.106 \pm 0.014) \%$
2008	BABAR	$A_{\mathrm{CP}}(K K)=(0.00 \pm 0.34 \pm 0.13) \%$
		$A_{\mathrm{CP}}(\pi \pi)=(-0.24 \pm 0.52 \pm 0.22) \%$
2012	Belle prel.	$\Delta A_{\mathrm{CP}}=(-0.87 \pm 0.41 \pm 0.06) \%$
2012	CDF	$\Delta A_{\mathrm{CP}}=(-0.62 \pm 0.21 \pm 0.10) \%$
2013	LHCb prel.	$\Delta A_{\mathrm{CP}}=(-0.34 \pm 0.15 \pm 0.10) \%$
2014	LHCb	$\Delta A_{\mathrm{CP}}=(0.14 \pm 0.16 \pm 0.08) \%$

$$
\Delta A_{C P}=\mathcal{A}_{C P}\left(K^{-} K^{+}\right)-\mathcal{A}_{C P}\left(\pi^{-} \pi^{+}\right)
$$

$$
\mathcal{A}_{C P}(f) \approx a_{f}^{d}+\frac{\langle t\rangle_{f}}{\tau_{D}} \cdot \Delta Y_{f}
$$

LHCb 1903.08726

$$
\Delta A_{C P}=(-15.4 \pm 2.9) \times 10^{-4}
$$

$a^{d}{ }_{f}$ is the $C P$ violation in the decay amplitude ΔY_{f} is related to mixing-induced $C P$ violation
$\langle t\rangle_{f}$ is the mean decay lifetime of D^{0} τ is the lifetime of D^{0}

$$
\begin{aligned}
& a_{K^{-} K^{+}}^{d}=(7.7 \pm 5.7) \times 10^{-4} \\
& a_{\pi^{-} \pi^{+}}^{d}=(23.2 \pm 6.1) \times 10^{-4}
\end{aligned}
$$

LHCb at PoS ICHEP2022 (2022) 732

U-spin CP anomaly
Bause et al., 2210.16330

$$
\begin{aligned}
& \text { (dispersive) } \\
& \operatorname{Re}[\Omega(s)]=\frac{1}{\pi} f_{4 M_{\pi}^{2}}^{\infty} \frac{\text { (absorptive) }}{\operatorname{Im}\left[\Omega\left(s^{\prime}\right)\right]} \\
& s^{\prime}-s
\end{aligned} s^{\prime}
$$

Pich, Solomonidi, Vale Silva 2305.11951

Search for New Physics in Charm Processes

Why do we expect NP?

- origin of neutrino masses, dark matter, source of additional Cp
- flavor anomalies in B mesons

If anomalies are in processes with the b quark, how to test up-quark sector?

Experimental searches

- low energies
- high energies

Theoretical framework

- Models (new gauge bosons, new scalars, new fermions,...)
- Model independent searches, e.g. SMEFT

Motivation from B anomaly:

- $\mathrm{R}_{\mathrm{D}}{ }^{\exp }$ and $\mathrm{R}_{\mathrm{D}^{*}}{ }^{\text {exp }}$: dominated by BaBar!

- In $\mathrm{R}_{\mathrm{J} / \psi^{\mathrm{exp}}}$ and $\mathrm{R}_{\Lambda c}{ }^{\exp }$ limited precision.

Solution for the puzzle New Physics!

Due to unitarity and perturbativity arguments e.g. di Luzio et al., 1604.05746 scale of New Physic below 10 TeV

New Belle-II and LHCb (run-2) data urgently needed!

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}} & =-2 \sqrt{2} G_{F} V_{c b} \mid\left(1+g_{V_{L}}\right)\left(\bar{c}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\ell}_{L} \gamma_{\mu} \nu_{L}\right)+g_{V_{R}}\left(\bar{c}_{R} \gamma_{\mu} b_{R}\right)\left(\bar{\ell}_{L} \gamma_{\mu} \nu_{L}\right) \\
& \left.+g_{S_{R}}\left(\bar{c}_{L} b_{R}\right)\left(\bar{\ell}_{R} \nu_{L}\right)+g_{S_{L}}\left(\bar{c}_{R} b_{L}\right)\left(\bar{\ell}_{R} \nu_{L}\right)+g_{T}\left(\bar{c}_{R} \sigma_{\mu \nu} b_{L}\right)\left(\bar{\ell}_{R} \sigma_{\mu \nu} \nu_{L}\right)\right]+ \text { h.c. }
\end{aligned}
$$

Angelescu et al., 2103.12504.

Eff. coeff.	1σ range	$\chi_{\min }^{2} /$ dof
$g_{V_{L}}\left(m_{b}\right)$	0.07 ± 0.02	$0.02 / 1$
$g_{S_{R}}\left(m_{b}\right)$	-0.31 ± 0.05	$5.3 / 1$
$g_{S_{L}}\left(m_{b}\right)$	0.12 ± 0.06	$8.8 / 1$
$g_{T}\left(m_{b}\right)$	-0.03 ± 0.01	$3.1 / 1$
$g_{S_{L}}=+4 g_{T} \in \mathbb{R}$	-0.03 ± 0.07	$12.5 / 1$
$g_{S_{L}}=-4 g_{T} \in \mathbb{R}$	0.16 ± 0.05	$2.0 / 1$
$g_{S_{L}}= \pm 4 g_{T} \in i \mathbb{R}$	0.48 ± 0.08	$2.4 / 1$

Comment

If we assume that NP in $D_{s} \rightarrow \tau \nu$ can be estimated by CKM matrix element for g_{v}, this requires knowledge of $f_{D s}$, and/or $V_{c s}$ known at the level less than 1% !

Puzzles in $\mathrm{b} \rightarrow s \mu \mu$ transition

$$
\mathcal{H}_{\text {eff }}=\mathcal{H}_{\mathrm{eff}}^{\mathrm{SM}}-\frac{4 G_{F}}{\sqrt{2}} \frac{e^{2}}{16 \pi^{2}} \sum_{q=s, d} \sum_{\ell=e, \mu} \sum_{i=9,10, S, P} V_{t b} V_{t q}^{*}\left(C_{i}^{\text {bqel }} O_{i}^{\text {bqel }}+C_{i}^{\text {bopel }} O_{i}^{\text {boel }}\right)+\text { h.c.. }
$$

$$
O_{9}^{b_{9} \ell \ell}=\left(\bar{q} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell}_{\gamma}^{\mu} \ell\right),
$$

$$
O_{9}^{\prime b q \ell}=\left(\bar{q} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell}^{\mu} \ell\right),
$$

$$
O_{10}^{b_{q} \ell \ell}=\left(\bar{q} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right),
$$

$$
O_{10}^{\text {boq } \ell \ell}=\left(\bar{q}_{\mu} P_{R} b\right)\left(\overline{\gamma^{\prime}} \gamma_{5} \ell\right),
$$

$$
O_{S}^{\text {bq } \ell \ell}=m_{b}\left(\bar{q} P_{R} b\right)(\bar{\ell} \ell),
$$

$$
O_{S}^{b_{q} \ell \ell}=m_{b}\left(\bar{q} P_{L} b\right)(\bar{\ell} \ell),
$$

$$
O_{P}^{b_{p} \ell \ell}=m_{b}\left(\bar{q} P_{R} b\right)\left(\bar{\ell} \gamma_{5} \ell\right),
$$

$$
O_{P}^{\prime b q \ell}=m_{b}\left(\bar{q} P_{L} b\right)\left(\bar{\ell} \gamma_{5} \ell\right) .
$$

$$
C_{7}^{S M}=0.29 ; C_{9}^{S M}=4.1 ; C_{10}^{S M}=-4.3
$$

Buras et al.,hep-ph/9311345;

Altmannshofer et al., 0811.1214;
Bobeth et al., hep-ph/9910220

$$
\begin{aligned}
C_{9}^{\text {univ. }} & =-0.64 \pm 0.22 \\
\Delta C_{9}^{b s \mu \mu}=-C_{10}^{b s \mu \mu} & =-0.11 \pm 0.06
\end{aligned}
$$

Greljo et al., 2212.10497

Angular observables, P_{5}^{\prime} still remains.

$$
\begin{aligned}
& R_{K(*)}=\frac{B R\left(B \rightarrow K^{(*)} \mu^{+} \mu^{-}\right)}{B R\left(B \rightarrow K^{(*)} e^{+} e^{-}\right)} \\
& 0.1<q^{2}<1.1: \begin{cases}R_{K} & =0.994_{-0.088}^{+0.090}(\text { stat })_{-0.027}^{+0.029}(\text { syst }) \\
R_{K^{*}} & =0.927_{-0.087}^{+0.097}\left(\text { stat }{ }_{-0.035}^{+0.0 .36}(\text { syst })\right.\end{cases}
\end{aligned}
$$

How to search for New Physics?

Motivation: charged current weak processes with b quark

```
To rely on NP models resolving R R(*)
Most favourable Leptoquarks
```

New vector-like fermions New gauge bosons New scalars (2THDM)

Motivation: FCNC processes

hopes for NP in $b \rightarrow s \mu \mu \quad$ disappearance of $R_{K\left({ }^{*}\right)}$ puzzle

Lepton flavour universality violation?

```
LHC did not find any evidence for NP particles
```

Charm and top offer unique probes of NP in up sector
Leptoquarks can only accommodate $R_{D(*)} \quad \mathrm{LQ}=\left(\mathrm{SU}(3)_{\mathrm{C}}, \mathrm{SU}(2)_{\mathrm{L}}, \mathrm{U}(1)_{\mathrm{Y}}\right)$ Dorsner, SF, Greljo, Kamenik,Kosnik 1603.04993

Scalar LQs they can modify Yukawa couplings ($S_{1}(3,1,1 / 3)$ and $R_{2}(3,2,7,6)$ for $\left.R_{D(*)}\right)$ hopefully can help in understanding origin of flavour masses

Models of NP and understanding flavour puzzle (why masses of quarks and leptons a so different)

Vector LQs prefarably should be gauge bosons, that requires full UV theory Some GUTs, Pati-Salam-like theories (candidate to explain $R_{D\left(^{*}\right)} U_{1}(3,1,2 / 3)$
Z^{\prime} as a new gauge boson of additional $U(1)$ gauge group (accompanied by 2HDM) explanation of Charm CP violation, D meson mixing.

Charged current weak processes in LQ models which explain B anomalies marginally contriburte -\% level. In charm rare decays-FCNC efects are supressed ususally by $\mathrm{V}_{\mathrm{cb}} \mathrm{V}_{\mathrm{ub}}{ }^{*}$ leading to a small effect..

Standard model effective field theory SMEFT

Weak interactions before SM

$$
\mathcal{L}_{e f f}=-\frac{G_{F}}{\sqrt{2}} J_{\mu}^{\dagger} J^{\mu}
$$

However, we know that at low energies

$$
\begin{gathered}
\text { ener } \\
\times \mathrm{U}(1)_{\mathrm{Y}}
\end{gathered}
$$

- Expectation: NP appears on high energy scale Λ;
- No new degrees of freedom bellow this scale;
- New NP mediators create operators of dimension $\mathrm{d} \geq 5$;

- Integrating out heavy degrees of freedom we create new operators not present in the SM
new heavy particle

integrate out heavy field

Effective operators 2499 possibilities Important feature of the SMEFT approach: running under SM gauge group

$$
\mathcal{L}_{S M E F T}=\mathcal{L}_{S M}+\sum_{k, d} \frac{C_{k}^{d}}{\Lambda^{d-4}} \mathcal{O}_{i}^{d}
$$

$d \geq 5$

Warsaw basis, Grzadkowski et al, 1008.4884
SMEFT papers: Manohar et al., 1308.2627, 1309.0819, 1310,4838, 1312.2014

- There are 1350 CP-even and 1149 CP-odd parameters in the dimension-six Lagrangian for 3 generations, and our results give the entire 2499×2499 anomalous dimension matrix.
- Manohar et al. (1310.4838) , in three SMEFT papers calculated the complete order y^{2} and y^{4} terms of the $2499 \times$ 2499 one-loop anomalous dimension matrix for the dimension-six operators of the SMEFT (y is a generic Yukawa coupling)
- Also they determined (1312.2014) the gauge terms of the one-loop anomalous dimension matrix for the dimension-six operators of the

It can help to that tree-level calculations in the UV model can reproduce the full theory two-loop calculations to remarkable accuracy.
e.g. 2HDM, SF et al., 2103.10859

Universal contribution to C_{9}

$N=2499$ dim-6 operators that conserve B and $L-$ rich flavor structure!

Observable

- The best probes of the SMEFT operators are rare/forbidden processes in the SM (One has to be careful these processes can be suppressed in concrete scenarios)
- LHC processes can be useful to probe these types of scenarios (with lower values for Λ)!

High- p_{T} searches (CMS and ATLAS) can probe the same four-fermion operators constrained by flavor-physics experiments (NA62, KOTO, BES-III, LHCb, Belle-II...).

Too many operators!

The SM gauge-kinetic sector is invariant under a global flavour symmetry

This works for the physics of the third generations.

How about charm quark? Above assumption means that the first and second generations are subjects of the $U(2)$ symmetry. However,

$$
\mathrm{m}_{\mathrm{c}} / \mathrm{m}_{\mathrm{u}} \sim 10^{3}
$$

For the "charm" considerations one needs different framework than $\mathrm{U}(2)$ symmetry.

Correlating NP effects in D and K

SMEFT useful tool for the search of NP

- Need extra assumptions $U(2)^{3}$ symmetry
- Or Model of NP on high scale
$\mathrm{U}(2)$ flavor symmetry is not always applicable - only when the third generation is considered.

However, having only two generations one can correlate NP in K and D

PHYSICAL REVIEW LETTERS \quad| week ending |
| :---: |
| 29 MAY 2009 |

Combining $K^{0}-\bar{K}^{0}$ Mixing and $D^{0}-\bar{D}^{0}$ Mixing to Constrain the Flavor Structure of New Physics

$$
\text { Kfir Blum, }{ }^{1, *} \text { Yuval Grossman, }{ }^{2, \dagger} \text { Yosef Nir, }{ }^{1, \#} \text { and Gilad Perez }{ }^{1, \S}
$$

${ }^{1}$ Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel
${ }^{2}$ Institute for High Energy Phenomenology, Newman Laboratory of Elementary Particle Physics, Cornell University, Ithaca, New York 14853, USA
(Received 1 April 2009; published 28 May 2009)
New physics at high energy scale often contributes to $K^{0}-\bar{K}^{0}$ and $D^{0}-\bar{D}^{0}$ mixings in an approximately $S U(2)_{L}$ invariant way. In such a case, the combination of measurements in these two systems is particularly powerful. The resulting constraints can be expressed in terms of misalignments and flavor splittings.
$\Delta S=2$ and $\Delta C=2$

$$
\frac{1}{\Lambda_{\mathrm{NP}}^{2}}\left[z_{1}^{K}\left(\bar{d}_{L} \gamma_{\mu} s_{L}\right)\left(\bar{d}_{L} \gamma^{\mu} s_{L}\right)+z_{1}^{D}\left(\bar{u}_{L} \gamma_{\mu} c_{L}\right)\left(\bar{u}_{L} \gamma^{\mu} c_{L}\right)\right] .
$$

$$
\begin{array}{ll}
\left|z_{1}^{K}\right| \leq z_{\text {exp }}^{K}=8.8 \times 10^{-7}\left(\frac{\Lambda_{\mathrm{NP}}}{1 \mathrm{TeV}}\right)^{2} & \operatorname{Im}\left(z_{1}^{K}\right) \leq z_{\text {exp }}^{I K}=3.3 \times 10^{-9}\left(\frac{\Lambda_{\mathrm{NP}}}{1 \mathrm{TeV}}\right)^{2} \\
\left|z_{1}^{D}\right| \leq z_{\text {exp }}^{D}=5.9 \times 10^{-7}\left(\frac{\Lambda_{\mathrm{NP}}}{1 \mathrm{TeV}}\right)^{2} & \operatorname{Im}\left(z_{1}^{D}\right) \leq z_{\text {exp }}^{I D}=1.0 \times 10^{-7}\left(\frac{\Lambda_{\mathrm{NP}}}{1 \mathrm{TeV}}\right)^{2}
\end{array}
$$

The above results can be derived by assuming

$$
\frac{1}{\Lambda_{\mathrm{NP}}^{2}}\left(\bar{Q}_{L i}\left(X_{Q}\right)_{i j} \gamma_{\mu} Q_{L j}\right)\left(\bar{Q}_{L i}\left(X_{Q}\right)_{i j} \gamma^{\mu} Q_{L j}\right), \quad \begin{aligned}
& \mathrm{X}_{\mathrm{Q}} \text { Hermitian matrix, provides } \\
& \text { the source of flavor violation beyond the Yukawa matrices }
\end{aligned}
$$

K - mixing and D - mixing depend on the same $\Lambda_{N P}$ two angles but differ in their alignment factors in such a way that depends on the Cabibbo angle.
Thus, the combination of these measurements constrains, for TeV-scale new physics,
assuming CP

$$
z_{1}^{K}=\Lambda_{12}^{2}\left(\hat{v}_{1}-i \hat{v}_{2}\right)^{2}
$$

$$
z_{1}^{D}=\Lambda_{12}^{2}\left(\cos 2 \theta_{c} \hat{v}_{1}-\sin 2 \theta_{c} \hat{v}_{3}-i \hat{v}_{2}\right)^{2} .
$$

$$
\begin{aligned}
\left|z_{1}^{K}\right| & =\Lambda_{12}^{2}\left[\cos ^{2} \gamma \sin ^{2} \alpha+\sin ^{2} \gamma\right], \\
\left|z_{1}^{P}\right| & =\Lambda_{12}^{2}\left[\cos ^{2} \gamma \sin ^{2}\left(\alpha-2 \theta_{c}\right)+\sin ^{2} \gamma\right] \\
\operatorname{Im}\left(z_{1}^{K}\right) & =-\Lambda_{12}^{2} \sin \alpha \sin 2 \gamma, \\
\operatorname{Im}\left(z_{1}^{D}\right) & =-\Lambda_{12}^{2} \sin \left(\alpha-2 \theta_{c}\right) \sin 2 \gamma .
\end{aligned}
$$

$$
\Lambda_{12} \leq 3.8 \times 10^{-3}\left(\frac{\Lambda_{\mathrm{NP}}}{1 \mathrm{TeV}}\right)
$$

$\mathcal{L}_{\mathrm{SMEFT}} \supset \frac{X_{i j}^{(3, \ell)}}{\Lambda^{2}}\left(\bar{Q}_{i} \gamma_{\mu} \sigma^{a} Q_{j}\right)\left(\bar{L}_{\ell} \gamma^{\mu} \sigma_{a} L_{\ell}\right)+\frac{X_{i j}^{(1, \ell)}}{\Lambda^{2}}\left(\bar{Q}_{i} \gamma_{\mu} Q_{j}\right)\left(\bar{L}_{\ell} \gamma^{\mu} L_{\ell}\right)$.

$$
X_{i j}^{(\pm)}=\lambda^{(\pm)} \delta_{i j}+c_{a}^{(\pm)}\left(\sigma^{a}\right)_{i j}
$$

$$
\begin{aligned}
s \rightarrow d \nu \bar{\nu}: & C_{L, \nu}^{\Delta S=1, \mathrm{NP}}=\frac{2 \pi}{\alpha_{\mathrm{em}}} \frac{v^{2}}{\Lambda^{2}}\left\{c_{R}^{(-)} \sin \theta_{d}^{(-)}-i c_{I}^{(-)}\right\}, \\
c \rightarrow u \ell^{+} \ell^{-}: & C_{9}^{\Delta C=1, \mathrm{NP}}=-C_{10}^{\Delta C=1, \mathrm{NP}}=\frac{\pi}{\alpha_{\mathrm{em}}} \frac{v^{2}}{\Lambda^{2}}\left\{c_{R}^{(-)} \sin \left(\theta_{d}^{(-)}-2 \theta_{c}\right)-i c_{I}^{(-)}\right\},
\end{aligned}
$$

2305.13851, SF, JF Kamenik, N. Kosnik and a. Korajac

$$
\begin{aligned}
s \rightarrow d \ell^{+} \ell^{-}: & C_{9}^{\Delta S=1, \mathrm{NP}}=-C_{10}^{\Delta S=1, \mathrm{NP}}=\frac{\pi}{\alpha_{\mathrm{em}}} \frac{v^{2}}{\Lambda^{2}}\left\{c_{R}^{(+)} \sin \theta_{d}^{(+)}-i c_{I}^{(+)}\right\} \\
c \rightarrow u \nu \bar{\nu}: & C_{L, \nu}^{\Delta C=1, \mathrm{NP}}=\frac{2 \pi}{\alpha_{\mathrm{em}}} \frac{v^{2}}{\Lambda^{2}}\left\{c_{R}^{(+)} \sin \left(\theta_{d}^{(+)}-2 \theta_{c}\right)-i c_{I}^{(+)}\right\} .
\end{aligned}
$$

$$
\left|\operatorname{Im}\left[c_{\tau, I}^{(+)}\right]\right| \lesssim 0.15
$$

See talk by Korajac

$$
c_{\mu, R}^{(-)}
$$

universal ©\&phases

On the quark level

$$
c \rightarrow u \ell^{+} \ell^{-}
$$

$$
c \rightarrow u \nu \bar{\nu}
$$

$$
c \rightarrow u \gamma
$$

$$
D \rightarrow \ell^{+} \ell^{-}
$$

$$
D \rightarrow \nu \bar{\nu}
$$

$$
D \rightarrow V \gamma
$$

$$
D \rightarrow P \ell^{+} \ell^{-}
$$

$$
D \rightarrow P \nu \bar{\nu}
$$

$$
D \rightarrow P_{1} P_{2} \gamma
$$

Hadronic modes

$$
D \rightarrow V \ell^{+} \ell^{-} \quad D \rightarrow P_{1} P_{2} \nu \bar{\nu}
$$

$$
D \rightarrow P_{1} P_{2} \ell^{+} \ell^{-}
$$

$$
\begin{aligned}
& D \rightarrow \text { invisibles } \\
& D \rightarrow P \text { invisibles }
\end{aligned}
$$

For references see Gisbert et al, Mod.Phys.Lett.A 36 (2021) 04, 2130002, 2011.09478
Observables: Branching ratios
Angular observable
LU ratios \& LFV CP asymmetries

See talks Suelmann, Plura, Korajac, Solomonidi, Khodjamirian

$$
\begin{gathered}
\mathcal{L}_{\mathrm{eff}}=\frac{4 G_{F}}{\sqrt{2}} \frac{\alpha_{e}}{4 \pi} V_{u b} V_{c b}^{*}\left[\sum_{k=7,9,10}\left(C_{k} O_{k}+C_{k}^{\prime} O_{k}^{\prime}\right)+\sum_{i j}\left(C_{L}^{i j} Q_{L}^{i j}+C_{R}^{i j} Q_{R}^{i j}\right)\right] \\
O_{7}=\frac{m_{c}\left(\bar{u}_{L} \sigma_{\mu \nu} c_{R}\right) F^{\mu \nu},}{}, \quad o_{7}^{\prime}=\frac{m_{c}\left(\bar{u}_{R} \sigma_{\mu \nu} c_{L}\right) F^{\mu \nu},}{}, \\
O_{9}=\left(\bar{u}_{L} \gamma_{\mu} c_{L}\right)\left(\bar{l}^{\mu} \ell\right), \\
O_{9}^{\prime}=\left(\bar{u}_{R} \gamma_{\mu} c_{R}\right)\left(\bar{l} \bar{l}^{\mu} \ell\right), \\
Q_{L}^{i j}=\left(\bar{u}_{L} \gamma_{\mu} c_{L}\right)\left(\bar{l} \gamma^{\mu} \gamma_{5} \ell\right), \\
O_{10}^{\prime}=\left(\bar{u}_{L} \bar{u}_{R} \gamma_{\mu} c_{R}\right)\left(\bar{l}_{\mu} c_{L}\right)\left(\bar{v}_{L j} \gamma^{\mu} \gamma^{\mu} v_{L i}\right), \\
Q_{R}^{i j}=\left(\bar{q}_{R} \gamma_{\mu} c_{R}\right)\left(\bar{v}_{L j} \gamma^{\mu} v_{L i}\right) .
\end{gathered}
$$

$$
D^{+} \rightarrow \pi^{+} \ell^{+} \ell^{-}
$$

$$
D \rightarrow P_{1} P_{2} \ell^{+} \ell^{-}
$$

See talk of Solomonidi
SF and Košnik 1510.00965
Bause et al 1909.11108,
see De Boer and Hiller, 1805.08516

- Branching ratios are insensitive to NP.
- Low q^{2} a lot of resonances \rightarrow sizable uncertainties.
- High q ${ }^{2}$ might include NP

	SM	$\left\|C_{9}\right\|=0.5$	$\left\|C_{10}\right\|=0.5$	$\left\|C_{9}\right\|= \pm\left\|C_{10}\right\|=0.5$
full q^{2}	$1.00 \pm \mathcal{O}\left(10^{-2}\right)$	SM-like	SM-like	SM-like
low q^{2}	$0.95 \pm \mathcal{O}\left(10^{-2}\right)$	$\mathcal{O}(100)$	$\mathcal{O}(100)$	$\mathcal{O}(100)$
high q^{2}	$1.00 \pm \mathcal{O}\left(10^{-2}\right)$	$0.2 \ldots 11$	$3 \ldots 7$	$2 \ldots 17$

Dark Matter in charm decays

$$
\begin{aligned}
& \text { Belle collaboration } 1611.09455 \\
& \mathrm{BR}\left(\mathrm{D}^{0} \rightarrow \text { invisible }\right)<9.4 \times 10^{-5}
\end{aligned}
$$

$$
\mathrm{SM}: \operatorname{BR}\left(\mathrm{D}^{0} \rightarrow \mathrm{vv}\right)=1.1 \times 10^{-30}
$$

Badin \& Petrov 1005.1277 suggested to search for processes with missing energy/t in $D^{0} \rightarrow \gamma \mathbb{\longrightarrow}$ could be SM neutrinos or DM! Bhattacharya, Grant and Petrov 1809.04606
$\mathcal{B}(D \rightarrow$ invisibles $)=\mathcal{B}(D \rightarrow \nu \bar{\nu})+\mathcal{B}(D \rightarrow \nu \bar{\nu}+\nu \bar{\nu})+\ldots$

The SM contributions to invisible widths of heavy mesons $\Gamma\left(D^{0} \rightarrow\right.$ missing energy) are completely dominated by the four-neutrino transitions $D^{0} \rightarrow v^{\top} v^{-}$.

$$
B R\left(D \rightarrow \nu \bar{\nu} \overline{)}=(2.96 \pm 0.39) \times 10^{-27}\right.
$$

Could appear from these couplings of the scalar LQs

$$
\begin{aligned}
\mathcal{L}_{\text {eff }}= & \sqrt{2} G_{F}\left[c^{L L}\left(\bar{u}_{L} \gamma_{\mu} c_{L}\right)\left(\bar{v}_{L} \gamma^{\mu} v_{L}^{\prime}\right)+c^{R R}\left(\bar{u}_{R} \gamma_{\mu} c_{R}\right)\left(\bar{v}_{R} \gamma^{\mu} v_{R}^{\prime}\right)\right. \\
& +c^{L R}\left(\bar{u}_{L} \gamma_{\mu} c_{L}\right)\left(\bar{v}_{R} \gamma^{\mu} v_{R}^{\prime}\right)+c^{R L}\left(\bar{u}_{R} \gamma_{\mu} c_{R}\right)\left(\bar{v}_{L} \gamma^{\mu} v_{L}^{\prime}\right)+g^{L L}\left(\bar{u}_{L} c_{R}\right)\left(\bar{v}_{L} \nu_{R}^{\prime}\right) \\
& +g^{R R}\left(\bar{u}_{R} c_{L}\right)\left(\bar{v}_{R} v_{L}^{\prime}\right)+g^{L R}\left(\bar{u}_{L} c_{R}\right)\left(\bar{v}_{R} v_{L}^{\prime}\right)+g^{R L}\left(\bar{u}_{R} c_{L}\right)\left(\bar{v}_{L} v_{R}^{\prime}\right) \\
& \left.+h^{L L}\left(\bar{u}_{L} \sigma^{\mu v} c_{R}\right)\left(\bar{v}_{L} \sigma_{\mu \nu} v_{R}^{\prime}\right)+h^{R R}\left(\bar{u}_{R} \sigma^{\mu v} c_{L}\right)\left(\bar{v}_{R} \sigma_{\mu \nu} v_{L}^{\prime}\right)\right]+ \text { h. c. }
\end{aligned}
$$

Cloured Scalar	Invisible fermion
$S_{1}=(\overline{3}, 1,1 / 3)$	$\bar{d}_{R}^{C i} \chi^{j} S_{1}$
$\bar{S}_{1}=(\overline{3}, 1,-2 / 3)$	$\bar{u}_{R}^{C i} \chi^{j} \bar{S}_{1}$
$\tilde{R}_{2}=(\overline{3}, 2,1 / 6)$	$\bar{u}_{L}^{i} \chi^{j} \tilde{R}_{2}^{2 / 3}$
$\tilde{R}_{2}=(\overline{3}, 2,1 / 6)$	$\bar{d}_{L}^{i} \chi^{j} \tilde{R}_{2}^{-1 / 3}$

$$
\mathcal{L}_{\mathrm{eff}}=\sqrt{2} G_{F} \frac{v^{2}}{2 M^{2}} \bar{y}_{1 c \chi}^{R R} \bar{y}_{1 u \chi}^{R R *}\left(\bar{u}_{R} \gamma_{\mu} c_{R}\right)\left(\bar{\chi}_{R} \gamma^{\mu} \chi_{R}\right)
$$

SF and Novosel, 2101.10712

Bause et al., 2010.02225 provide model-independent upper limits on branching ratios reaching few 10^{-5} in the most general case of arbitrary lepton flavor structure, 10^{-5} for scenarios with charged lepton conservation and few 10^{-6} assuming lepton universality. We also give upper limits in Z and leptoquark models.

$$
\mathcal{H}_{\mathrm{eff}}^{\ell_{i} \ell_{j}} \supset-\frac{4 G_{\mathrm{F}}}{\sqrt{2}} \frac{\alpha_{e}}{4 \pi}\left(\mathcal{K}_{L}^{U i j} O_{L}^{i j}+\mathcal{K}_{R}^{U i j} O_{R}^{i j}\right)+\text { H.c., }\left.\quad \mathcal{K}_{L, R}^{U}\right|_{\mathrm{LU}}=\left(\begin{array}{ccc}
k & 0 & 0 \\
0 & k & 0 \\
0 & 0 & k
\end{array}\right),\left.\mathcal{K}_{L, R}^{U}\right|_{\mathrm{cLFC}}=\left(\begin{array}{ccc}
k_{e} & 0 & 0 \\
0 & k_{\mu} & 0 \\
0 & 0 & k_{\tau}
\end{array}\right)
$$

```
O
```

"general" - all entries in the coefficient matrix are arbitrarily filled,

Relative statistical uncertainty of the branching ratio δB versus the branching ratio B for decays

Bause et al., LUIU.02225

Advantage: some processes are poorly constrained at low energies - but can be constrained at high energies
e.g., $\mathrm{b} \rightarrow \mathrm{s} \tau \tau, \mathrm{c} \rightarrow \mathrm{d} \tau v, \mathrm{c} \rightarrow \mathrm{d} e v \ldots$

Procedure: Recast di-lepton searches and look for NP effects in the tails of the invariant- mass distributions

Charm leptonic and semileptpnic processes at LHC

Greljo et al., 2003.12421

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{CC}}=-\frac{4 G_{F}}{\sqrt{2}} V_{c i}\left[\left(1+\epsilon_{V_{L}}^{\alpha \beta i}\right) \mathcal{O}_{V_{L}}^{\alpha \beta i}+\epsilon_{V_{R}}^{\alpha \beta i} \mathcal{O}_{V_{R}}^{\alpha \beta i}+\epsilon_{S_{L}}^{\alpha \beta i} \mathcal{O}_{S_{L}}^{\alpha \beta i}+\epsilon_{S_{R}}^{\alpha \beta i} \mathcal{O}_{S_{R}}^{\alpha \beta i}+\epsilon_{T}^{\alpha \beta i} \mathcal{O}_{T}^{\alpha \beta i}\right]+\text { h.c. } \\
& \begin{array}{lll}
\mathcal{O}_{V_{L}}^{\alpha \beta i}=\left(\bar{e}_{L}^{\alpha} \gamma_{\mu} \nu_{L}^{\beta}\right)\left(\bar{c}_{L} \gamma^{\mu} d_{L}^{i}\right), & \mathcal{O}_{V_{R}}^{\alpha \beta i}=\left(\bar{e}_{L}^{\alpha} \gamma_{\mu} \nu_{L}^{\beta}\right)\left(\bar{c}_{R} \gamma^{\mu} d_{R}^{i}\right), & q_{L}^{i}=\binom{u_{L}^{i}}{V_{i j} d_{L}^{j}}
\end{array} \quad{ }^{l_{L}^{\alpha}=\left(\begin{array}{l}
\nu \\
\mathcal{O}_{S_{L}}^{\alpha \beta i} \\
e_{L}^{2}
\end{array}\right)} \\
& \mathcal{O}_{T}^{\alpha \beta i}=\left(\bar{e}_{R}^{\alpha} \sigma_{\mu \nu} \nu_{L}^{\beta}\right)\left(\bar{c}_{R} \sigma^{\mu \nu} d_{L}^{i}\right) .
\end{aligned}
$$

SMEFT running from $\mu=1 \mathrm{TeV}$ to $\mu=2 \mathrm{GeV}$

$$
\begin{aligned}
\epsilon_{S_{L}}(2 \mathrm{GeV}) & \approx 2.1 \epsilon_{S_{L}}(\mathrm{TeV})-0.3 \epsilon_{T}(\mathrm{TeV}), \quad \epsilon_{S_{R}}(2 \mathrm{GeV}) \approx 2.0 \epsilon_{S_{R}}(\mathrm{TeV}) \\
\epsilon_{T}(2 \mathrm{GeV}) & \approx 0.8 \epsilon_{T}(\mathrm{TeV})
\end{aligned}
$$

$\operatorname{BR}\left(D^{+} \rightarrow \bar{e}^{\alpha} \nu^{\alpha}\right)=\tau_{D^{+}} \frac{m_{D+} m_{\alpha}^{2} f_{D}^{2} G_{F}^{2}\left|V_{c d}\right|^{2} \beta_{\alpha}^{4}}{8 \pi}\left|1-\epsilon_{A}^{\alpha d}+\frac{m_{D}^{2}}{m_{\alpha}\left(m_{c}+m_{u}\right)} \epsilon_{P}^{\alpha d}\right|^{2} \quad$ Using lattice input for decay constant/formfactors
$\frac{\operatorname{BR}\left(D \rightarrow P_{i} \bar{\ell}^{\alpha} \nu^{\alpha}\right)}{\mathrm{BR}_{\mathrm{SM}}}=\left|1+\epsilon_{V}^{\alpha i}\right|^{2}+2 \operatorname{Re}\left[\left(1+\epsilon_{V}^{\alpha i}\right)\left(x_{S} \epsilon_{S}^{\alpha i *}+x_{T} \epsilon_{T}^{\alpha i *}\right)\right]+y_{S}\left|\epsilon_{S}^{\alpha i}\right|^{2}+y_{T}\left|\epsilon_{T}^{\alpha i}\right|^{2}$
$x_{S, T}$ and $y_{S, T} \rightarrow$ the interference between NP and SM and the quadratic NP effects

i	α	$\epsilon_{V_{L}}^{\alpha \alpha i} \times 10^{2}$	$\begin{gathered} \left\|\epsilon_{V_{L}}^{\alpha \boldsymbol{\beta} i}\right\| \times \mathbf{1 0}^{\mathbf{2}} \\ \quad(\alpha \neq \beta) \end{gathered}$	$\begin{aligned} & \quad \mid \epsilon_{S_{L, R}}^{\alpha \beta i}(\mu \\ & \mu=1 \mathrm{TeV} \end{aligned}$	$\begin{aligned} & \mid \times \mathbf{1 0}^{\mathbf{2}} \\ & \mu=2 \mathrm{GeV} \end{aligned}$	$\begin{aligned} & \quad \mid \boldsymbol{\epsilon}_{\boldsymbol{T}}^{\boldsymbol{\alpha} \boldsymbol{\beta} i}(\boldsymbol{\mu} \\ & \mu=1 \mathrm{TeV} \end{aligned}$	$\begin{aligned} & \mid \times 10^{\mathbf{3}} \\ & \mu=2 \mathrm{GeV} \end{aligned}$
d	e	[-0.52, 0.86]	0.67 (0.42)	0.72 (0.46)	1.5 (0.96)	4.3 (2.7)	3.4 (2.2)
	μ	[-0.85, 1.2]	1.0 (0.38)	1.1 (0.42)	2.3 (0.86)	6.6 (2.4)	5.2 (1.9)
	τ	[-1.4, 1.8]	1.6 (0.68)	1.5 (0.55)	3.1 (1.1)	8.7 (3.1)	6.9 (2.5)
s	$e$$\mu$$\tau$	[-0.28, 0.59]	0.42 (0.26)	0.43 (0.28)	0.91 (0.57)	2.8 (1.5)	2.2 (1.2)
		[-0.46, 0.78]	0.63 (0.23)	0.68 (0.25)	1.4 (0.52)	4.0 (1.4)	3.1 (1.1)
		[-0.65, 1.2]	0.93 (0.40)	0.87 (0.31)	1.8 (0.65)	5.2 (1.8)	4.1 (1.5)

Exclusion limits at $95 \% \mathrm{CL}$ on $\mathrm{c} \rightarrow \mathrm{d}(\mathrm{s}) \mathrm{e}^{-} \mathrm{v}$ transitions in $\left(\varepsilon_{\mathrm{VL}}, \varepsilon_{\mathrm{VL}}\right)$ plane
pink region \qquad excluded by $D(s)$ meson decays
blue region \longrightarrow excluded by high-pT LHC
a striking illustration of the LHC potential to probe new flavor violating interactions at high- p_{T}

Summary and outlook

SM theoretical approaches make great progress in precision calculation of hadronic spectra, properties of charmed hadron, weak decays, rare decays within SM.

New Physics in charm processes are not expected to be significant. Many studies established powerful constraints of the NP parameters.

New experimental results from Belle 2, BesllI, LHCb ... will encourage theoretical studies!

A poem on the charm quark future

Charm quark, charm quark, What will you become? A particle of the future, Or just a memory of some? You're the third-most massive quark, With a charge of $+2 / 3$ e.
You carry charm, a quantum number, And you're found in various hadrons, you see. You're an elementary particle, Of the second generation.
You're part of the Standard Model, And you're subject to speculation.
The future of charm quarks, Is still unknown to us. But we'll keep on studying,
And we'll never lose our trust.

Al generate charm quark in style

Munch

Mucha

Dali

