

Insights into the T_{cc}^+ tetraquark in a constituent quark model picture

P. G. Ortega (Universidad de Salamanca)

in collaboration with J. Segovia (U. Pablo de Olavide), D.R. Entem and F. Fernández.

The quark model

Successful classification scheme organizing the large number of conventional hadrons

Baryons

Discoveries at *B*-factories

BELLE@KEK (Japan)

PANDA@GSI (Germany)

Explosion of related experimental activity: Signals of exotic structures? Standard qq or qqq? Threshold cusps?

BABAR@SLAC (USA)

CLEO@CORNELL (USA)

BES@IHEP (China)

LHCb@CERN (Switzerland)

Pablo G. Ortega – pgortega@usal.es

GLUEX@JLAB (USA)

Introduction

Hidden-charm LHCb tetraquarks

Hidden-charm LHCb tetraquarks

The landmark of 2021: Observation of T_{cc}^+

Introduction

Analysis using a Breit-Wigner model

- Signal in $D^0D^0\pi^+$ from primary pp-vertex.
- BW signal [(DD)_Sπ P-wave] + 2-body phase-space background + polynomial
- Convolution with detector resolution, rms of 400 keV.
- Model assumptions:
 - $J^P = 1^+$ state decaying to DD^* in S-wave
 - Isoscalar T_{cc}^+ due to absence of signal in D^0D^+ and $D^+D^0\pi^+$.
 - No isospin violation in couplings to D^{*+}D⁰ and D^{*0}D⁺.
- Model results:

Parameter	Value
Ν	117 ± 16
$\delta m_{\rm BW}$	$-273 \pm 61 \text{ keV/c}^2$
IBW	$410 \pm 105 \text{ keV}$

LHCb Coll, Nature Phys. 18 (2022), 751; Nature Commun., 13 (2022) 3351.

Analysis using an unitarized model

- Nearly-isolated resonance below the D*+D⁰ threshold.
- Most precise peak position wrt threshold.
- Lifetime: $\tau \sim 10^{-20} \text{ s} \rightarrow \text{Unprecedently}$ large for exotic hadrons.
- Model parameters:

$$\delta m_{
m pole} = (-360 \pm 40^{+4}_{-0}) keV,$$

 $\Gamma_{
m pole} = (48 \pm 2^{+0}_{-14}) keV.$

Extremely narrow state, very close to threshold \mapsto Strong candidate for a pure molecular state.

Pablo G. Ortega – pgortega@usai.es

In this talk...

- Analysis of the "molecular" nature of charged T_{cc} state as a DD^* system using a **constituent quark model**.
- Study of bottom partners T_{bb} .

• Reference: P. G. Ortega, J. Segovia, D. R. Entem, F. Fernández, "Nature of the doubly-charmed tetraquark T_{cc}^+ in a constituent quark model", *Phys. Lett. B* **841** (2023), 137918. [arXiv:2211.06118 [hep-ph]].

Constituent quark model (CQM)

- Spontaneous breaking of chiral symmetry
 - Chiral invariant lagrangian

$$\mathcal{L} = \bar{\psi}(i\partial - M(q^2)U^{\gamma_5})\psi$$

• Pseudo-Goldstone bosons $(\phi^a = \{\vec{\pi}, K_i, \eta_8\}).$

$$U^{\gamma_5} = e^{i\lambda_a \phi^a \gamma_5 / f_\pi}$$

$$\sim 1 + rac{i}{f_\pi} \gamma_5 \lambda_a \phi^a - rac{1}{2f_\pi^2} \phi_a \phi^a + \dots$$

• Constituent quark mass

$$M(q^2) = m_q F(q^2) = m_q \left[rac{\Lambda^2}{\Lambda^2 + q^2}
ight]$$

Constituent quark model (CQM)

Beyond the chiral symmetry breaking scale \rightarrowtail QCD perturbative effects

- Taken into account through the one-gluon-exchange (OGE) potential
- The OGE is a standard color Fermi-Breit interaction from the vertex:

$$\mathcal{L}_{qqg} = i\sqrt{4\pi\alpha_s}\,\bar\psi\gamma_\mu\,G^\mu_a\lambda^a\psi,$$

 α_s(μ) an effective scale dependent strong coupling constant

$$\alpha_{s}(\mu) = \alpha_{0} \ln^{-1} \left(\frac{\mu^{2} + \mu_{0}^{2}}{\Lambda_{0}^{2}} \right)$$

J. Vijande et al. J. Phys. G31 (2005) 481.

Constituent quark model (CQM)

Beyond the chiral symmetry breaking scale \rightarrowtail QCD non-perturbative effects

• Linear screened confining potential

$$\mathcal{W}_{ ext{CON}}(ec{r}) = \left[-a_c(1-e^{-\mu_c r})+\Delta
ight](ec{\lambda}_i^c\cdotec{\lambda}_j^c)\,.$$

G.S. Bali et al. Phys. Rep. 343 (2001) 1.

4 $m_{ps} + m$ з 2 [V(r)-V(r₀)]r₀ 1 0 -1 -2 $\kappa = 0.1575$ -3 0.5 1 1.5 2 2.5 з r/r_0

G.S. Bali et al. Phys. Rev. D71 (2005) 114513.

Model with a large history \rightarrowtail All parameters constrained from low-lying meson and baryon spectra.

• Summary of interactions for T_{cc}^+ :

$$V_{q_iq_j} = \left\{ \begin{array}{l} qq \Rightarrow V_{\rm CON} + V_{\rm OGE} + V_{\rm Goldstone} \\ Qq \Rightarrow V_{\rm CON} + V_{\rm OGE} \\ QQ \Rightarrow V_{\rm CON} + V_{\rm OGE} \end{array} \right.$$

Previous studies:

- Nucleon-Nucleon interaction: Entem:2000mq, Valcarce:1995up, Fernandez:1993hx
- Baryon spectrum: Valcarce:2005rr, Garcilazo:2001ck
- Meson spectrum: Vijande:2004he, Segovia:2008zz, Segovia:2016xqb
- Meson-meson states: Ortega:2009hj, Ortega:2020uvc, Ortega:2023pmr, Ortega:2023azl
- Baryon-meson states: Ortega:2012cx, Ortega:2016syt, Ortega:2014eoa, Ortega:2022uyu

Resonating Group Method (RGM)

- \bullet Interaction at quark level \rightarrowtail Interaction between clusters
- 1-Hadron wave function:

$$\phi_A = \phi_A(\vec{p}_A)\sigma_A^{SF}\xi_A^c$$

• 2-Hadron wave function:

$$\Psi = \mathcal{A}\left[\phi_{A}(\vec{p}_{A})\phi_{B}(\vec{p}_{B})\chi(\vec{P})\sigma_{AB}^{SF}\xi_{AB}^{c}\right]$$

• Dynamics of the bound state governed by the Schrödinger equation:

$$(\mathcal{H} - E_T)|\Psi >= 0 \Leftrightarrow \mathcal{H} = \sum_{i=1}^{N} \frac{\bar{p}_i^2}{2m_i} + \sum_{i < j} V_{ij} - T_{\rm CM}$$

$$\left(\frac{\vec{P}'^2}{2\mu} - E\right)\chi(\vec{P}') + \int \left(^{\text{RGM}}V_D(\vec{P}',\vec{P}_i) + ^{\text{RGM}}K_E(\vec{P}',\vec{P}_i)\chi(\vec{P}_i)d\vec{P}_i = 0$$

• Scattering state dynamics governed by Lippmann-Schwinger equation:

$$T_{\beta}^{\beta'}(z;p',p) = V_{\beta}^{\beta'}(p',p) + \sum_{\beta''} \int dp'' p''^2 V_{\beta''}^{\beta'}(p',p'') \frac{1}{z - E_{\beta''}(p'')} T_{\beta}^{\beta''}(z;p'',p)$$

RGM - Direct terms

$$^{\mathrm{RGM}}V_{D}(\vec{P}',\vec{P}) = \sum_{i \in A, j \in B} \int d\vec{p}'_{A}d\vec{p}'_{B}d\vec{p}_{A}d\vec{p}_{B} \phi^{*}_{A'}(\vec{p}'_{A})\phi^{*}_{B'}(\vec{p}'_{B})V_{ij}(\vec{P}',\vec{P})\phi_{A}(\vec{p}_{A})\phi_{B}(\vec{p}_{B})$$

- V_{ii} the interaction at quark level given by CQM
- i(j) the indices that run inside the constituentes of A(B) meson.
- $\vec{p}_{A(B)}$ the relative internal momentum of the A(B) meson.
- The wave functions $\phi_{A(B)}$ of the mesons act as natural cut offs for the potentials.

RGM - Exchange terms

• Identical quarks in T_{cc}^+ : $c\bar{q} - c\bar{q}' \rightarrow \text{Exchange terms needed}$:

$$\mathcal{A} = (1 - P_q)(1 - P_c) \rightarrowtail \Psi = (1 - \frac{P_q}{P_q}) \left[(\phi_A \phi_B + (-1)^{L+S-s_A-s_B+l-1} \phi_B \phi_A) \chi_L \sigma_{AB}^{SF} \xi_{AB}^c \right]$$

• ${}^{\mathrm{RGM}}\mathcal{K}_{E}(\vec{P'},\vec{P})$ is a non-local energy-dependent exchange kernel.

$$\mathcal{K}_{E}(\vec{P}',\vec{P}) = V_{E}(\vec{P}',\vec{P}) - E_{T} {}^{\mathrm{RGM}} N_{E}(\vec{P}',\vec{P})$$

• It can be separated in a potential term and a normalization term. $^{\text{RGM}}V_{E}(\vec{P}',\vec{P}_{i}) = \int d\vec{p}_{A}'d\vec{p}_{B}'d\vec{p}_{A}d\vec{p}_{B}d\vec{P} \phi_{A'}^{*}(\vec{p}_{A}')\phi_{B'}^{*}(\vec{p}_{B}')\mathcal{H}(\vec{P}',\vec{P})P_{q}\left[\phi_{A}(\vec{p}_{A})\phi_{B}(\vec{p}_{B})\delta^{(3)}(\vec{P}-\vec{P}_{i})\right],$ $^{\text{RGM}}N_{E}(\vec{P}',\vec{P}_{i}) = \int d\vec{p}_{A}'d\vec{p}_{B}'d\vec{p}_{A}d\vec{p}_{B}d\vec{P} \phi_{A'}^{*}(\vec{p}_{A}')\phi_{B'}^{*}(\vec{p}_{B}')P_{q}\left[\phi_{A}(\vec{p}_{A})\phi_{B}(\vec{p}_{B})\delta^{(3)}(\vec{P}-\vec{P}_{i})\right],$ $^{\text{E}}E_{T} \text{ is the total energy of the system, }\mathcal{H} \text{ hamiltonian from CQM.}$

Aim \rightarrow Evaluate the molecular nature of the T_{cc}^+

- Coupled-channels calculation of the $J^P=1^+~ccar{q}ar{q}'$ sector
- Meson-meson thresholds: D^0D^{*+} (3875.10), D^+D^{*0} (3876.51) and $D^{*0}D^{*+}$ (4017.11).
- Meson-meson pairs can be in relative 3S_1 and 3D_1 partial waves.
- Energy difference between D^0D^{*+} and D^+D^{*0} is ~1.4 MeV \rightarrow Isospin breaking effects via calculation in charged basis:

$$\begin{split} |D^{*\,0}D^{+}\rangle &= -\frac{1}{\sqrt{2}} \left(|D^{*}D, I = 1\rangle - |D^{*}D, I = 0\rangle \right) \,, \\ |D^{*\,+}D^{0}\rangle &= -\frac{1}{\sqrt{2}} \left(|D^{*}D, I = 1\rangle + |D^{*}D, I = 0\rangle \right) \,. \end{split}$$

- Recalls the X(3872) case studied in Ortega:2009hj:
 - Same $J^P = 1^+$

Results

- Similar system $D\overline{D}^*(X)$ vs $DD^*(T_{cc})$.
- Same direct interaction for I = 0.
- X can couple to $c\bar{c}$, T_{cc} cannot.
- T_{cc} has exchange diagrams, X does not.

- We find one bound state below the lower $D^0 D^{*+}$ threshold \mapsto Binding energy of $M_{D^0 D^{*+}} M_{\text{pole}} = 387 \text{ keV}.$
- $\bullet\,$ Most of the attraction is due to π and σ exchanges, but unbound unless the exchange kernel is considered.
- The state is basically a D^0D^{*+} molecule, with ~ 87% probability due to its proximity to threshold. The remaining 13% corresponds to the D^+D^{*0} channel.
- Essentially an isoscalar (~ 81%) state \rightarrow Sizable isospin breaking (~ 19% of l = 1) due to the mass difference between D^0D^{*+} and D^+D^{*0} channels.

● State sensitive to three-body effects → If a *D** energy-dependent self-energy is taken for the *D** meson the pole moves to 278 keV binding energy and its width drops to 42 keV.

Additional T_{cc} state in $J^P = 1^+$

- Besides the T_{cc}^+ below D^0D^{*+} , we also find a molecular candidate slightly below the D^+D^{*0} threshold in the $J^P = 1^+ cc\bar{q}\bar{q}'$ sector
- Probabilities of each chanel:

State	$\mathcal{P}_{D^0D^{*+}}$	$\mathcal{P}_{D^+D^{*0}}$	$\mathcal{P}_{D^{*+}D^{*0}}$	$\mathcal{P}_{I=0}$	$\mathcal{P}_{I=1}$
T_{cc}	86.8	13.1	0.1	81.3	18.7
T'_{cc}	16.9	83.1	0.01	57.7	42.3

• Properties of bound states (in %):

State	EB	$M-i\frac{\Gamma}{2}$	$\Gamma_{D^0D^0\pi^+}$	$\Gamma_{D^0D^+\pi^0}$	$\Gamma_{D^0D^+\gamma}$
T_{cc}	387	3874.713	49	26	6
T'_{cc}	3	3876.507 <i>- i</i> 0.129	175	140	40

Experimental line shape description

- Good description of the experimental line shape of $D^0 D^0 \pi^+$.
- Theoretical line convoluted with the detector resolution (rms of 400 keV).
- *T_{cc}* peak clearly visible.
- T'_{cc} peak appears as a small bump smeared by the resolution.
- The normalization via χ^2 -minimization procedure.

Experimental line shape description (II)

- Good description of the experimental line shape of $D^0 D^0 \pi^+$.
- Theoretical line convoluted with the detector resolution (rms of 400 keV).
- T_{cc} peak clearly visible.
- T'_{cc} peak appears as a small bump smeared by the resolution.
- The normalization via χ^2 -minimization procedure.

Channel	$a_{ m sc}$ [fm]	$r_{\rm eff}$ [fm]	$g [\text{GeV}^{-1/2}]$
$D^{0}D^{* +}$	-7.14	-0.49	0.12
$D^{+}D^{* 0}$	-8.98 + 8.57 i	0.82 + 0.48 <i>i</i>	0.07
$D^{* 0} D^{* +}$	0.20 + 0.02 i	-6.09 - 6.23 i	< 0.01

- Scattering length of the lower threshold $D^0 D^{*+}$ fully compatible with the experimental estimation ($a_{sc}^{\rm HCb} = -7.15(51)$ fm).
- The LHCb only gives an upper limit of $r_{exp} > -11.9(16.9)$ fm at 90(95)% CL \mapsto Compatible with our $r_{eff} = -0.49$ fm.
- The scattering length and effective ranges for D⁺D^{*0} and D^{*0}D^{*+} channels are complex → Indicates the existence of inelastic channels.
- The real part of the D^+D^{*0} scattering length is large and negative \rightarrow Compatible with the $T'_{cc}(3876)$ bound state.

J^P	1	Mass	Width	E_B	$\mathcal{P}_{D^*D^*}$	Туре
∩ +	0	4018.0	8.15	0.9	95.6%	Resonance
0	1	4016.9	0.6	-0.2	98.8%	Virtual
1^{+}	_	4014.0	0	-3.1	38.5%	Virtual

- We searched for T_{cc}^+ partners in alternative J^P sectors and thresholds \rightarrow E.g. DD in $J^P = 0^+$ or D^*D^* in $J^P = 0^+$, 1^+ and 2^+ .
- No bound state was found. However, we find a virtual and resonance in $J^P = 0^+$ in isospin 1 and 0, respectively, just below the D^*D^* threshold.
- Additionaly, in $J^P = 1^+$, below the D^*D^* threshold, a faint virtual state is found just below the D^*D^* threshold.

T_{cc}^+ partners and the bottom sector (II)

- In the bottom sector we analyzed the $1^+~\bar{b}\bar{b}qq'$ sector.
- Coupled-channels calculation analog to that of the $T^+_{cc} \rightarrow B^0 B^{*+}$, $B^+ B^{*0}$ and $B^{*+} B^{*0}$ thresholds.

۲	Two T _{bb} b	ound sta	ates found	below the <i>l</i>	3 ⁰ B*+ thresl	nold:		
	Mass	E_B	$\mathcal{P}_{B^0B^{*+}}$	$\mathcal{P}_{B^+B^{*0}}$	$\mathcal{P}_{B^{*+}B^{*0}}$	$ \mathcal{P}_{I=0} $	$\mathcal{P}_{I=1}$	
	10582.2	21.9	47.8	50.0	2.2	99.99	0.01	
	10593.5	10.5	51.0	48.6	0.4	0.02	99.98	

- We searched for further T_{bb} states in $J^P = 0^+$ and 2^+ , including all meson-meson channels in a relative *S*-wave $\rightarrow BB + B^*B^*$ for 0^+ and B^*B^* for 2^+ .
- We find five candidates:

J^P	1	Mass	Width	E_B	\mathcal{P}_{BB}	$\mathcal{P}_{B^*B^*}$	Г _{<i>ВВ</i>}	$\Gamma_{B^*B^*}$
	Δ	10553.0	0	6.0	92%	8%	0	0
0^+	0	10640.7	2.8	8.7	76%	24%	2.8	0
0	1	10545.9	0	13.1	93%	7%	0	0
	T	10672.6	72.0	-23.2	39%	61%	30.7	41.3
2+	1	10642.3	0	7.1	-	100%	-	0

These results show a populated spectroscopy in the bottom sector, which can be detected in future searches.

- The T_{cc}^+ found as a $D^0 D^{*+}$ molecule (87%) $\rightarrow E_B = 387 \text{ keV}/c^2$ and $\Gamma = 81 \text{ keV}$, in agreement with the experimental measurements.
- The quark content of the state forces the inclusion of exchange diagrams to treat indistinguishable quarks between the *D* mesons, which are found to be essential to bind the molecule.
- The $D^0D^0\pi^+$ line shape, scattering lengths and effective ranges of the molecule are also analyzed, which are found to be in agreement with the LHCb analysis.
- We search for further partners of the T_{cc}^+ in other charm and bottom sectors, finding different candidates. In particular, in the charm sector we found a shallow $J^P = 1^+ D^+ D^{*0}$ molecule (83%), dubbed T'_{cc} , just 1.8 MeV above the T_{cc}^+ state.
- In the bottom sector, an isoscalar and an isovector $J^P = 1^+$ bottom partners were identified as BB^* molecules lying 21.9 MeV/c² (I = 0) and 10.5 MeV/c² (I = 1), respectively, below the B^0B^{*+} threshold.

Thanks for your attention.

Pablo García Ortega

University of Salamanca

pgortega@usal.es

• Reference:

 Nature of the doubly-charmed tetraquark T⁺_{ct} in a constituent quark model, Phys. Lett. B 841 (2023), 137918. [arXiv:2211.06118 [hep-ph]].

• Recent related studies:

- Unraveling the nature of the novel T_{cs} and $T_{c\bar{s}}$ tetraquark candidates Arxiv: 2305.14430
- Exploring $T_{\psi\psi}$ tetraquark candidates in a coupled-channels formalism Arxiv: 2307.00532

Backslides

T_{cc}^+ partners and the bottom sector (III)

Comparison of our isoscalar ${\cal T}_{bb}$ candidate with the predictions from other theoretical studies.

Weinberg's compositeness criterion

• Following Weinberg's analysis:

$$egin{aligned} & eta_{
m sc} = -rac{2(1-Z)}{2-Z}R + \mathcal{O}(m_\pi^{-1}), \ & r_{
m eff} = -rac{Z}{1-Z}R + \mathcal{O}(m_\pi^{-1}), \end{aligned}$$

with $R = (2mB)^{-1}$ and B the binding energy.

• Taking our values $a_{
m sc} = -7.15$ fm and $r_{
m eff} = -0.49$ fm we obtain

$$Z = 1 - \frac{1}{\sqrt{1 + 2\left|\frac{I_{\rm eff}}{a_{\rm sc}}\right|}} \sim 0.06$$

• $Z = 0.06 \rightarrow Mostly composite!$

Antisymmetry and OPE sign

X(3872)

• $J^{PC} = 1^{+\pm}$ State:

$$|\Psi^{\pm}_{Dar{D}^{*}}
angle=rac{1}{\sqrt{2}}\left(|Dar{D}^{*}
angle\mp|D^{*}ar{D}
angle
ight)$$

Quark ordering: cq̄ - q'c̄
Central part of OPE between qq̄:

 $V_{23}(q) = V(q)(\vec{\sigma}_2 \cdot \vec{\sigma}_3)(\vec{\tau}_2 \cdot \vec{\tau}_3)$

with $\langle \vec{\tau}_2 \cdot \vec{\tau}_3 \rangle = 2I(I+1) - 3$. Hence,

 $\langle \Psi^{\pm}_{D\bar{D}^*} | V_{23} | \Psi^{\pm}_{D\bar{D}^*} \rangle \propto \pm (2I(I+1)-3)V(Q)$

• Sign for $(I)J^{PC} = (0)1^{++}, D\bar{D}^* + h.c.$:

 $\langle \Psi^+_{D\bar{D}^*} | V_{23} | \Psi^+_{D\bar{D}^*} \rangle \propto -3V(Q)$

 T_{cc}^+

• $J^{PC} = 1^+$ State:

$$|\Psi_{DD^*}
angle = rac{1}{\sqrt{2}}\left(|DD^*
angle + (-1)^{I-1}|D^*D
angle
ight)$$

Quark ordering: cq̄ - cq̄'
Central part of OPE between q̄q̄:

 $V_{24}(q)=-V(q)(ec{\sigma}_2\cdotec{\sigma}_4)(ec{ au}_2\cdotec{ au}_4)$

with $\langle \vec{\tau}_2 \cdot \vec{\tau}_4 \rangle = 2I(I+1) - 3$. Hence,

 $\langle \Psi_{DD^*} | V_{24} | \Psi_{DD^*} \rangle \propto (-1)^l (2l(l+1)-3)V(Q)$

• Sign for
$$(I)J^P = (0)1^+$$
, DD^* :

 $\langle \Psi_{DD^*} | V_{24} | \Psi_{DD^*}
angle \propto - 3 V(Q)$

with Q the transferred momentum between mesons and $V(q) = \frac{1}{(2\pi)^3} \frac{g_{ch}^2}{4m_a^2} \frac{1}{3} \frac{\Lambda^2}{\Lambda^2 + q^2} \frac{q^2}{q^2 + m^2}$.

Calculation of partial decay widths

- The T_{cc}^+ only decays strongly if the D^* inside the DD^* disintegrates.
- As the D^* width is small, the decay can be calculated perturbatively considering the D^* as unstable into $D\pi$ or $D\gamma$. E.g.:

$$\Gamma_{D^0D^0\pi^+} = \Gamma_{D^{*+} o D^0\pi^+} \int_0^{k_{\max}} k^2 dk |\chi_{D^0D^{*+}}(k)|^2 rac{(M_T - E_{D^0} - E_{D^{*+}})^2}{(M_T - E_{D^0} - E_{D^{*+}})^2 + rac{\Gamma_{D^*}^2}{4}} \,,$$

where

- $\Gamma_{D^{*+} \rightarrow D^0 \pi^+}$ is the D^{*+} experimental partial width to $D^0 \pi^+$.
- $\chi_{D^0D^{*+}}(k)$ is the wave function of the channel D^0D^{*+}
- E_D are the total energies of the mesons involved in the reaction.
- $k_{\rm max}$ is the maximum on-shell momentum of the $D^0 D^0 \pi^+$ system:

$$k_{\max} = rac{1}{2M_T} \sqrt{[M_T^2 - (2m_{D^0} + m_{\pi^+})^2] \left[M_T^2 - m_{\pi^+}^2
ight]} \,,$$

where M_T is the mass of the T_{cc}^+ .

• The $D^0D^0\pi^+$ threshold is located at about 3869 MeV, *i.e.* there is not much phase space available, which explains the small partial width obtained.

Table: D^0D^{*+} pole position and S-wave scattering lengths for coupled-channels calculation with an unstable D^* meson, considering different D^{*0} and D^{*+} widths. We distinguish between the scattering length evaluated at the real $M_{D^0D^{*+}} = m_{D^0} + m_{D^{*+}}$ (third column) or at the complex $E_{D^0D^{*+}} = m_{D^0} + m_{D^{*+}} - i\Gamma_{D^{*+}}/2$ (forth column).

Case	$E_R - i \Gamma_R/2$	$-\pi\mu T(M_{D^0D^{*+}})$	$a_{ m sc,D^0D^{st+}}$
$\Gamma_{D^{*0}} = \Gamma_{D^{*+}} = 0$	3874.713 <i>- i</i> 0	-7.14 + 0.00 i	-7.14 + 0.00 i
$\Gamma_{D^{*0}}^{D} = 0, \Gamma_{D^{*+}} = 83.4 \text{ keV}$	3874.713 <i>— i</i> 0.036	-8.64 + 2.32 i	-7.14 - 0.08 i
$\Gamma_{D^{*0}}^{D} = \Gamma_{D^{*+}}^{D} = 83.4 \text{ keV}$	3874.713 <i>— i</i> 0.042	-8.58 + 2.43 i	-7.14 + 0.001 i

Experimental line shape of $D^+D^0\pi^+$

- Good description of the experimental line shape of $D^+D^0\pi^+$.
- T'_{cc} not visible \rightarrow No bound state in D^+D^{*+} system.