

τ Physics

Antonio Pich

IFIC, Univ. Valencia - CSIC

CHARM 2023 Siegen, Germany 17-21 July 2023

τ Physics

Decay

Production

Higgs Interactions

 τ

 \overline{v}_{τ}

Neutrinos

τ Data Samples

ALEPH:	3.3 \cdot 10 ⁵ reconstructed τ decays
BaBar / Belle:	1.4 \cdot 10 ⁹ $\tau^+\tau^-$ pairs
Belle-II:	4.6 \cdot 10 ¹⁰ $\tau^+\tau^-$ pairs
sτcF:	2.1 · 10 ¹⁰ $\tau^+\tau^-$ pairs (10 ⁸ near threshold)
Tera-Z:	1.7 · 10 ¹¹ $\tau^{+}\tau^{-}$ pairs

Luminosity is important. Systematics & backgrounds also!

Different experimental conditions at different energies $(\tau^+\tau^- \text{ threshold}, \psi, \Upsilon, Z)$

LEPTONIC DECAYS

 0.9796 ± 0.0039

 $B_e^{\text{univ}} = (17.812 \pm 0.022)\%$

A. Pich

288

289

290

 τ_{τ} (fs)

291

292

293

17.7

17.6

τ Physics

BaBar '10:

Preliminary Belle-II measurement of m_{τ}

Lepton Universality

Lepton Universality

Lepton Universality in W decays

	CMS	LEP	ATLAS	LHCb	CDF	D0
$R_{\mu/e}$	1.009 ± 0.009	0.993 ± 0.019	1.003 ± 0.010	0.980 ± 0.012	0.991 ± 0.012	0.886 ± 0.121
$R_{\tau/e}$	0.994 ± 0.021	1.063 ± 0.027				
$R_{\tau/\mu}$	0.985 ± 0.020	1.070 ± 0.026	0.992 ± 0.013	—	—	—
$R_{\tau/\ell}$	1.002 ± 0.019	1.066 ± 0.025		_	_	

Flavour Anomaly

 3.2σ discrepancy

$$R(D^{(*)}) \equiv \frac{\operatorname{Br}(\overline{B} \to D^{(*)}\tau^{-}\overline{\nu}_{\tau})}{\operatorname{Br}(\overline{B} \to D^{(*)}\ell^{-}\overline{\nu}_{\ell})}$$

 $\mathcal{R}_{J/\psi}^{SM} \approx 0.26 - 0.28$ $F_{L,SM}^{D^*} = 0.455 \pm 0.003$

A. Pich

 τ Physics

Lorentz Structure: $\ell^- \rightarrow \ell'^- \bar{\nu}_{\ell'} \nu_{\ell}$

Effective Hamiltonian:

$$\mathcal{H} = 4 \frac{G_{\ell'\ell}}{\sqrt{2}} \sum_{n,\epsilon,\omega} g^n_{\epsilon\omega} \left[\overline{\ell'_{\epsilon}} \Gamma^n(\nu_{\ell'})_{\sigma} \right] \left[\overline{(\nu_{\ell})_{\lambda}} \Gamma_n \ell_{\omega} \right]$$

Normalization: $\Gamma \propto \frac{1}{4} \left(|g_{RR}^S|^2 + |g_{RL}^S|^2 + |g_{LR}^S|^2 + |g_{LR}^S|^2 \right) + 3 \left(|g_{RL}^T|^2 + |g_{LR}^T|^2 \right) + \left(|g_{RR}^V|^2 + |g_{RL}^V|^2 + |g_{LR}^V|^2 + |g_{LR}^V|^2 \right) \equiv 1$

 $|g_{LL}^V| > 0.960 \quad (90\% \text{ CL})$

High-precision τ data needed!

μ^- Longitudinal Polarization in $\tau^- \rightarrow \mu^- \overline{\nu}_{\mu} \nu_{\tau}$

Probability to decay into a right-handed muon:

$$Q_{\mu_{R}} = Q_{RR} + Q_{RL} = \frac{1}{4} \left(|g_{RR}^{S}|^{2} + |g_{RL}^{S}|^{2} \right) + 3 |g_{RL}^{T}|^{2} + |g_{RR}^{V}|^{2} + |g_{RL}^{V}|^{2} = \frac{1}{2} \left(1 - \xi' \right)$$

Belle, 2303.10570

Tiny probability of muon decaying inside the detector compensated by huge statistics

 $\xi' = 0.22 \pm 0.94 \pm 0.42$

 $Q_{\mu_R} \le 1.23$ (90% CL)

Not yet constraining. Error dominated by statistics...

Bounds on Lepton Flavour Violation

$$\begin{split} & \text{Br}(\mu \to e\gamma) < 4.2 \times 10^{-13} \text{ (MEG, 90\% CL)} , \\ & \text{Br}(\text{K}_{\text{L}} \to \mu \, e) < 4.7 \times 10^{-12} \text{ (BNL-E871, 90\% CL)} , \\ & \text{Br}(\text{B}^0 \to e\,\mu) < 1.0 \times 10^{-9} \text{ (LHCb, 90\% CL)} , \end{split}$$

$$Br(Z^0 \to e \mu) < 7.5 \times 10^{-7}$$
 (ATLAS, 95% CL)

$$Br(Z^0 \to e\tau) \le 5.0 \times 10^{-6}$$
 (ATLAS, 95% CL)

$$Br(Z^0 \to \mu \tau) \le 6.5 \times 10^{-6}$$
 (ATLAS, 95% CL)

Br(μ → 3e) < 1.0 × 10⁻¹² (SINDRUM, 90% CL) Br(K⁺→ $\pi^+\mu^+e^-$) < 1.3 × 10⁻¹¹ (BNL-E865, 90% CL) Br(D⁰→ e μ) < 1.3 × 10⁻⁸ (LHCb, 90% CL)

Br(H \rightarrow eµ) < 6.1 × 10⁻⁵ (ATLAS, 95% CL)

Br(H
$$\rightarrow$$
 et) $< 2.2 \times 10^{-3}$ (CMS, 95% CL)

Br(H $\rightarrow \mu \tau$) < 1.5 × 10⁻³ (CMS, 95% CL)

CP Asymmetry

$$A_{\tau} \equiv \frac{\Gamma(\tau^+ \to \pi^+ K_S \overline{\nu}_{\tau}) - \Gamma(\tau^- \to \pi^- K_S \nu_{\tau})}{\Gamma(\tau^+ \to \pi^+ K_S \overline{\nu}_{\tau}) + \Gamma(\tau^- \to \pi^- K_S \nu_{\tau})} = (-3.6 \pm 2.3 \pm 1.1) \cdot 10^{-3} \qquad \text{BaBar'11} \\ (\ge 0 \pi^0)$$

Belle does not see any asymmetry at the 10⁻² level

Bigi-Sanda, Grossman-Nir

 $A_{\tau}^{\rm SM}\left(\tau^+ \to \pi^+ K_S \overline{\nu}_{\tau}\right) = (3.6 \pm 0.1) \cdot 10^{-3}$

$$A_i^{\text{CP}} \simeq \left\langle \cos\beta\cos\psi \right\rangle_i^{\tau^-} - \left\langle \cos\beta\cos\psi \right\rangle_i^{\tau^+}$$

bins (i) of $W = \sqrt{Q^2}$
 $\beta = K_s$ direction in hadronic rest frame

 $\psi = \tau$ direction

BaBar signal incompatible (with EFT) with other sets of flavour data

Cirigliano-Crivellin-Hoferichter, 1712.06595

Rendón-Roig-Toledo, 1902.08143

 2.8σ discrepancy

HADRONIC TAU DECAY

Only lepton massive enough to decay into hadrons

$$R_{\tau} \equiv \frac{\Gamma(\tau^{-} \to v_{\tau} + \text{Hadrons})}{\Gamma(\tau^{-} \to v_{\tau} \ e^{-} \ \overline{v_{e}})} \approx N_{C} \quad ; \quad R_{\tau} = \frac{1 - B_{e} - B_{\mu}}{B_{e}^{\text{univ}}} = 3.6381 \pm 0.0075$$
$$R_{\tau} = \frac{1}{R_{\tau}} - \frac{1}{R_{\tau}} - 1.972564 = 3.6417 \pm 0.0070 \quad ; \quad R_{\tau} = \frac{\text{Br}(\tau^{-} \to v_{\tau} + \text{Hadrons})}{R_{\tau}} = 3.6343 \pm 0.0082$$

 B_e^{univ}

 B_e^{univ}

Invariant Mass Spectra

Useful tests of QCD Dynamics Form Factors Non-perturbative parameters

Resonance Chiral Theory (**R**χ**T**)

A.P., Prog. Part. Nucl. Phys. 117 (2021) 103846

$$\frac{\sigma(e^+e^- \rightarrow \text{had})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)} = 12\pi \text{ Im }\Pi_{\text{em}}(s)$$

 $\Pi_{\rm em}^{\mu\nu}(q) \equiv i \int d^4x \ e^{iqx} \left\langle 0 \left| T[J_{\rm em}^{\mu}(x) J_{\rm em}^{\nu}(0)] \right| 0 \right\rangle = \left(-g^{\mu\nu}q^2 + q^{\mu}q^{\nu} \right) \Pi_{\rm em}(q^2)$

 $\Pi^{(J)}(s) \equiv \left| V_{ud} \right|^2 \left[\Pi^{(J)}_{ud,V}(s) + \Pi^{(J)}_{ud,A}(s) \right] + \left| V_{us} \right|^2 \left[\Pi^{(J)}_{us,V}(s) + \Pi^{(J)}_{us,A}(s) \right]$

 $\Pi_{ij,J}^{\mu\nu}(q) \equiv i \int d^4x \ e^{iqx} \left\langle 0 \left| T[J_{ij}^{\mu}(x)J_{ij}^{\nu}(0)^{\dagger}] \right| 0 \right\rangle = \left(-g^{\mu\nu}q^2 + q^{\mu}q^{\nu} \right) \Pi_{ij,J}^{(1)}(q^2) + q^{\mu}q^{\nu} \Pi_{ij,J}^{(0)}(q^2)$

SPECTRAL FUNCTIONS

A. Pich

 τ Physics

QCD Prediction of R₇ **Braaten-Narison-Pich'92** $R_{\tau} \equiv \frac{\Gamma(\tau^{-} \to v_{\tau} + \text{had})}{\Gamma(\tau^{-} \to v_{\tau} e^{-} \overline{v_{\tau}})} = 12\pi \int_{0}^{1} dx \, (1 - x)^{2} \Big[(1 + 2x) \, \text{Im} \, \Pi^{(1)}(x \, m_{\tau}^{2}) + \, \text{Im} \, \Pi^{(0)}(x \, m_{\tau}^{2}) \Big]$ $x \equiv s/m_{\tau}^2$ Im(s) $R_{\tau} = 6\pi i \oint_{|x|=1} dx (1-x)^2 \left[(1+2x) \Pi^{(0+1)}(x m_{\tau}^2) - 2x \Pi^{(0)}(x m_{\tau}^2) \right]$ m_{τ}^2 Re(s) $\Pi^{(J)}(s) = \sum_{D=2n} \frac{C_D^{(J)}(s,\mu) \langle O_D(\mu) \rangle}{(-s)^{D/2}}$ OPE $R_{\tau} = N_{C} S_{EW} \left(1 + \delta_{P} + \delta_{NP} \right) = R_{\tau,V} + R_{\tau,A} + R_{\tau,S}$ $\delta_{\text{NIP}} = -0.0064 \pm 0.0013$ $S_{\rm FW} = 1.0201$ (3) • Fitted from data (Davier et al) Marciano-Sirlin, Braaten-Li, Erler $\delta_{\rm P} = a_{\tau} + 5.20 \ a_{\tau}^2 + 26 \ a_{\tau}^3 + 127 \ a_{\tau}^4 + \dots \approx 20\%$ $a_{\tau} \equiv \alpha_s(m_{\tau})/\pi$ • **Baikov-Chetyrkin-Kühn**

Spectral Function Distribution

Moments:

$$R_{\tau}^{kl}(s_0) \equiv \int_0^{s_0} ds \, \left(1 - \frac{s}{s_0}\right)^k \left(\frac{s}{m_{\tau}^2}\right)^l \frac{dR_{\tau}}{ds}$$

Sensitivity to power corrections (k,l)

The non-perturbative contribution to R_{τ} can be obtained from the invariant-mass distribution of the final hadrons

Detailed analyses by ALEPH, CLEO and OPAL

$$\delta_{\rm NP} = -0.0064 \pm 0.0013$$

$$\alpha_s(m_\tau^2) = 0.332 \pm 0.005_{\rm exp} \pm 0.011_{\rm th}$$
Davier et al., 1312.1501
(ALEPH data)

α_{s} at N³LO from τ and Z

 $\alpha_s(m_{\tau}^2) = 0.328 \pm 0.013$ $\alpha_{\rm s}(M_{\rm Z}^2) = 0.1197 \pm 0.0015$ $\alpha_{\rm s} (M_Z^2)_{Z \,\rm width} = 0.1199 \pm 0.0029$ Very precise test of **Asymptotic Freedom** $\alpha_s^{\tau}(M_Z^2) - \alpha_s^Z(M_Z^2) =$ $0.0002 \pm 0.0015_{\tau} \pm 0.0029_{Z}$

Improved spectral function data

Better control of non-perturbative contributions Rodríguez-Sánchez, Pich, 2205.07587

Better theoretical understanding of higher-order perturbative corrections needed (CIPT / FOPT, K₅, renormalons...) Hoang et al, Golterman et al...

 τ Physics

Euclidean Adler Function (Q²=-q²)

2023 CMD-3 $e^+e^- ightarrow \pi^+\pi^-$ Data 2302.08834

 $au
ightarrow 2\pi
u_{ au}$ & $e^+e^-
ightarrow 2\pi$ Spectral Functions

Masjuan-Miranda-Roig 2305.20005

A. Pich

τ Physics

Strange Spectral Function

Very low statistics. Large experimental uncertainties

Sensitive to SU(3) breaking: m_s, V_{us}

V_{us} **Determination**

$$R_{\tau,uq} = \Gamma(\tau^- \to \nu_\tau \overline{u}q) / \Gamma(\tau^- \to \nu_\tau \overline{\nu}_e e^-)$$

HFLAV 2022:

 $Br(\tau^{-} \rightarrow v_{\tau}\overline{u}s) = (2.908 \pm 0.048)\%$ $Br(\tau^{-} \rightarrow v_{\tau}\overline{u}d) = (61.83 \pm 0.10)\%$ $Br(\tau^{-} \rightarrow v_{\tau}\overline{v}e^{-})_{univ} = (17.812 \pm 0.022)\%$ $V_{ud} = 0.97373 \pm 0.00031$

K₁₃: $|V_{us}| = 0.2232 \pm 0.0006$ $[f_+(0) = 0.9698 \pm 0.0017]$ FLAG 2021

Sizeable discrepancy. Improvements needed

V_{us} & V_{ud} Cabibbo Anomaly

Sizeable violation of CKM unitarity

Hadronic τ Decay & New Physics

$$\mathcal{L}_{\text{eff}} = -\frac{G_F V_{ud}}{\sqrt{2}} \left[\left(1 + \epsilon_L^{\tau} \right) \bar{\tau} \gamma_\mu (1 - \gamma_5) \nu_\tau \cdot \bar{u} \gamma^\mu (1 - \gamma_5) d + \epsilon_R^{\tau} \bar{\tau} \gamma_\mu (1 - \gamma_5) \nu_\tau \cdot \bar{u} \gamma^\mu (1 + \gamma_5) d \right. \\ \left. + \bar{\tau} (1 - \gamma_5) \nu_\tau \cdot \bar{u} \left[\epsilon_S^{\tau} - \epsilon_P^{\tau} \gamma_5 \right] d + \epsilon_T^{\tau} \bar{\tau} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\tau \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right] + \text{h.c.}$$

A. Pich

τ Physics

SUMMARY

Many interesting τ topics

- Tests of QCD and the Electroweak Theory
- Looking for Signals of New Phenomena
- Superb Tool for New Physics Searches

Better data samples needed

Lots of data will be produced @ Belle-II & sτcF & TeraZ...

Improving systematics brings a great reward

Backup

CHARM 2023 Siegen, Germany 17-21 July 2023

LORENTZ STRUCTURE

			95%	6 CL	S	tahl, PDG2020
$G_{I'I}$	$n \left[\overline{d} - n \left(\right) \right]$		$\tau \rightarrow$	$e \overline{\nu}_e \nu_{\tau}$		
$\mathcal{H} = 4 \frac{\mathcal{H}}{\sqrt{2}} \sum_{n,\epsilon,\omega}$	$g_{\epsilon \omega}^{n} \left[l_{\epsilon}^{r} \right]^{n} \left(\nu_{l'} \right)_{\sigma} \right]$	$\left[(\nu_l)_{\lambda} \mid n l_{\omega} \right]$	$ g^S_{\scriptscriptstyle RR} $	< 0.70	$ g_{RR}^V < 0.17$	$ g_{RR}^T \equiv 0$
, ,			$ g^S_{\scriptscriptstyle LR} $	< 0.99	$\left g_{LR}^{V}\right < 0.13$	$ g_{LR}^T < 0.082$
			$ g^S_{\scriptscriptstyle RL} $	< 2.01	$ g_{RL}^V < 0.52$	$ g_{RL}^T < 0.51$
			$ g_{LL}^S $	< 2.01	$ g_{LL}^V < 1.005$	$ g_{LL}^T \equiv 0$
90% CL	Fetscher-Ge	rber, PDG2020	${\tau \rightarrow}$	$\mu \overline{\nu}_{\mu} \nu_{\tau}$		
$\mu \to e \overline{\nu}_e \nu_\mu$			$ g^S_{RR} $	< 0.72	$ g_{RR}^V < 0.18$	$ g_{RR}^T \equiv 0$
$ g_{RR}^{S} < 0.035$	$ g_{RR}^{V} < 0.017$	$ g_{RR}^T \equiv 0$	$ g^S_{LR} $	< 0.95	$ g_{LR}^V < 0.12$	$ g_{LR}^T < 0.079$
$ g_{LR}^{S} < 0.050$	$ g_{LR}^V < 0.023$	$ g_{LR}^T < 0.015$	$ g^S_{\scriptscriptstyle RL} $	< 2.01	$ g_{RL}^V < 0.52$	$ g_{RL}^T < 0.51$
$ g_{RL}^{S} < 0.420$	$ g_{RL}^{V} < 0.105$	$ g_{RL}^{T} < 0.105$	$ g_{LL}^S $	< 2.01	$ g_{LL}^V < 1.005$	$ g_{LL}^T \equiv 0$
$ g_{LL}^{S} < 0.550$	$ g_{LL}^V > 0.960$	$ g_{LL}^T \equiv 0$	$\tau \rightarrow$	$\pi \nu$		
$ g_{LR}^S + 6g_{LR}^T < 0.143$	$ g_{RL}^S + 6g_{RL}^T < 0.418$		$\frac{1}{1 e^{V_{\perp}}}$	~ 0.15	$ _{\sim}V > 0.002$	
$ g_{LR}^S + 2g_{LR}^T < 0.108$	$ g_{RL}^S + 2g_{RL}^T < 0.417$		$ g_R^{\cdot} $	< 0.15	$ g_L > 0.992$	
$ g_{LR}^S - 2g_{LR}^T < 0.070$	$ g_{RL}^S - 2g_{RL}^T < 0.418$		$\tau \rightarrow$	$\rho u_{ au}$		
$Q_{RR} + Q_{LR} < 8.2 \times 10$	-4		$ g_R^V $	< 0.10	$ g_L^V > 0.995$	
			$\tau \rightarrow$	$\cdot a_1 \nu_{\tau}$		

 $|g_R^V| < 0.16 \qquad |g_L^V| > 0.987$

Only Lepton Massive Enough to Decay into Hadrons

 $\tau^- \rightarrow v_{\tau} H^-$ probes the hadronic V-A current

 $\left\langle H^{-} \left| \overline{d}_{\theta} \gamma^{\mu} (1 - \gamma_{5}) u \right| 0 \right\rangle$

 $e^+e^- \rightarrow H^0$ probes the hadronic electromagnetic current

$$\left\langle H^{0} \right| \sum_{q} Q_{q} \, \overline{q} \, \gamma^{\mu} q \left| 0 \right\rangle$$

Isospin:
$$\frac{\Gamma(\tau^- \to v_{\tau} V^-)}{\Gamma(\tau^- \to v_{\tau} e^- \overline{v_e})} = \frac{3\cos^2\theta_C}{2\pi\alpha^2} S_{\text{EW}} \int_0^1 dx \, (1-x)^2 (1+2x) \, x \, \sigma_{e^+ e^- \to V^0}^{I=1}(x \, m_{\tau}^2)$$

Perturbative
$$(m_q=0)$$

 $-s \frac{d}{ds} \Pi^{(0+1)}(s) = \frac{1}{4\pi^2} \sum_{n=0}^{\infty} K_n \left(\frac{\alpha_s(-s)}{\pi}\right)^n$
 $K_0 = K_1 = 1$, $K_2 = 1.63982$, $K_3 = 6.37101$, $K_4 = 49.07570$
Baikov-Chetyrkin-Kühn '08
 \Longrightarrow $\delta_p = \sum_{n=1}^{\infty} K_n A^{(n)}(\alpha_s) = a_\tau + 5.20 a_\tau^2 + 26 a_\tau^3 + 127 a_\tau^4 + \cdots$
Le Diberder-Pich '92
 $A^{(n)}(\alpha_s) = \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} (1-2x+2x^3-x^4) \left(\frac{\alpha_s(-s)}{\pi}\right)^n = a_\tau^n + \cdots$; $a_\tau \equiv \alpha_s(m_\tau)/\pi$
Power Corrections
Braaten-Narison-Pich '92
 $G_{(s)} \approx \frac{1}{4\pi^2} \sum_{n\geq 2} \frac{C_{2n} \langle O_{2n} \rangle}{(-s)^n}$
 $G_{NP} \approx \frac{-1}{2\pi i} \oint_{|x|=1} dx (1-3x^2+2x^3) \sum_{n\geq 2} \frac{C_{2n} \langle O_{2n} \rangle}{(-xm_\tau^2)^n} = -3 \frac{C_6 \langle O_6 \rangle}{m_\tau^6} - 2 \frac{C_8 \langle O_8 \rangle}{m_\tau^8}$
Suppressed by m_τ^6 [additional chiral suppression in $C_6 \langle O_6 \rangle^{V+A}$]

Exhaustive Analysis of ALEPH Data

Rodríguez-Sánchez, Pich, 1605.06830

Method $(V \perp \Lambda)$	$\alpha_s(m_{ au}^2)$			
	CIPT	FOPT	Average	
ALEPH moments ¹	$0.339 {}^{+ 0.019}_{- 0.017}$	$0.319{}^{+0.017}_{-0.015}$	$0.329 {}^{+ 0.020}_{- 0.018}$	
Mod. ALEPH moments ²	$0.338 {}^{+ 0.014}_{- 0.012}$	$0.319{}^{+0.013}_{-0.010}$	$0.329{}^{+0.016}_{-0.014}$	
$A^{(2,m)}$ moments ³	$0.336 {}^{+ 0.018}_{- 0.016}$	$0.317 {}^{+ 0.015}_{- 0.013}$	$0.326 {}^{+ 0.018}_{- 0.016}$	
s ₀ dependence ⁴	0.335 ± 0.014	0.323 ± 0.012	0.329 ± 0.013	
Borel transform ⁵	$0.328 {}^{+ 0.014}_{- 0.013}$	$0.318 {}^{+ 0.015}_{- 0.012}$	$0.323 {}^{+ 0.015}_{- 0.013}$	
Combined value	0.335 ± 0.013	0.320 ± 0.012	0.328 ± 0.013	

 $lpha_s(\mathsf{M}^2_\mathsf{Z})=0.1197\pm0.0015$

1)
$$\omega_{kl}(x) = (1+2x)(1-x)^{2+k}x^{l}$$
 $(k,l) = (0,0), (1,0), (1,1), (1,2), (1,3)$
2) $\tilde{\omega}_{kl}(x) = (1-x)^{2+k}x^{l}$ $(k,l) = (0,0), (1,0), (1,1), (1,2), (1,3)$
3) $\omega^{(2,m)}(x) = (1-x)^{2}\sum_{k=0}^{m}(k+1)x^{k} = 1 - (m+2)x^{m+1} + (m+1)x^{m+2}$, $1 \le m \le 5$
4) $\omega^{(2,m)}(x)$ $0 \le m \le 2$, 1 single moment in each fit
5) $\omega_{a}^{(1,m)}(x) = (1-x^{m+1})e^{-ax}$ $0 \le m \le 6$

Chiral Sum Rules

 $\Pi(\mathbf{s}) \equiv \Pi_{\mathbf{VV}}(\mathbf{s}) - \Pi_{\mathbf{AA}}(\mathbf{s}) \quad \text{Pure non-perturbative quantity}$ $\lim_{s \to \infty} s^2 \Pi(s) = 0 \quad \rightarrow \quad \Pi^{\text{OPE}}(s) = -\frac{O_6}{s^3} + \frac{O_8}{s^4} - \cdots$

 $\chi PT \quad (s \to 0): \quad \Pi(s) = \frac{2F^2}{s} - 8L_{10}^r(\mu^2) + \frac{1}{16\pi^2} \left(\frac{5}{3} - \ln\frac{-s}{\mu^2}\right) + 16C_{87}^r(\mu^2)\frac{s}{F^2} + \cdots$

$$\int_{s_{\rm th}}^{s_0} ds \,\,\omega(s) \,\frac{1}{\pi} \,\mathrm{Im}\,\Pi(s) + \frac{1}{2\pi i} \oint_{|s|=s_0} ds \,\,\omega(s)\,\Pi(s) = 2 f_\pi^2 \,\omega(m_\pi^2) + \mathrm{Res}[\omega(s)\Pi(s), s=0]$$

Statistical analysis:

 $\begin{aligned} C_{87}^{\text{eff}} &= (8.40 \pm 0.18) \cdot 10^{-3} \,\text{GeV}^{-2} \\ L_{10}^{\text{eff}} &= (-6.48 \pm 0.05) \cdot 10^{-3} \;. \end{aligned}$

González-Pich-Rodríguez, 1602.06112

$$O_6 = (-3.6 \pm 0.7) \cdot 10^{-3} \,\text{GeV}^6$$

 $O_8 = (-1.0 \pm 0.4) \cdot 10^{-2} \,\text{GeV}^8$

• χ **PT** Parameters:

• $\varepsilon'_{K}/\varepsilon_{K}$: $\mathcal{O}_{6} \rightarrow \langle (\pi\pi)_{I=2}|Q_{8}|K^{0}\rangle \rightarrow \text{e.m. penguin contribution}$

 $\left(\varepsilon'_{K}/\varepsilon_{K}\right)_{\rm EWP}^{I=2} = \left(-4.5 \pm 1.8\right) \cdot 10^{-4}$

Pich-Rodríguez, 2102.09308

Electron Anomalous Magnetic Moment

Morel et al, Nature 588 (2020) 61

New measurement of α

 $\alpha^{-1}(\text{Rb}) = 137.035\,999\,206\,(11)$

 8.1×10^{-11} accuracy

5.8 σ discrepancy with Cs experiment

$$\begin{split} \Delta a_e &\equiv a_e^{\exp} - a_e^{\rm SM} \\ &= \begin{cases} (-8.8 \pm 3.6) \cdot 10^{-13} & (\text{Cs}, -2.4\sigma) \\ (+4.8 \pm 3.0) \cdot 10^{-13} & (\text{Rb}, +1.6\sigma) \end{cases} \end{split}$$

τ Anomalous Magnetic Moment

Difficult to measure!

$$a_{\tau}^{\exp} = (-0.018 \pm 0.017)$$
 Delphi

 $-0.007 < a_{\tau}^{\text{New Phys}} < 0.005$

González-Springer, Santamaria, Vidal '00 (LEP/SLD data)

Eidelman, Passera

$$10^{8} \cdot a_{\tau}^{\text{th}} = 117\ 324 \pm 2 \qquad \text{QED} \\ + 47.4 \pm 0.5 \qquad \text{EW} \\ + 337.5 \pm 3.7 \qquad \text{hvp} \\ + 7.6 \pm 0.2 \qquad \text{hvp NLO} \\ + 5 \pm 3 \qquad \text{light-by-light} \\ = 117\ 721\ \pm\ 5$$

Enhanced sensitivity to new physics: $(m_{\tau}/m_{\mu})^2 = 283$

	Electron	Muon	Tau
a ^{EW} /a ^{HAD}	1/56	1/45	1/7
a ^{EW} /δa ^{HAD}	1.6	3	10

Essentially unknown

May be accessible at BFs through radiative leptonic decays (Fael et al) Or with a polarized e⁻ beam (Crivellin et al)

EFT analysis of $\tau \rightarrow v_{\tau} K \pi$

Rendón-Roig-Toledo, 1902.08143

$$\mathcal{L}_{cc} = -\frac{G_F V_{us}}{\sqrt{2}} (1 + \epsilon_L + \epsilon_R) \Big[\bar{\tau} \gamma_\mu (1 - \gamma_5) \nu_\ell \cdot \bar{u} [\gamma^\mu - (1 - 2\hat{\epsilon}_R) \gamma^\mu \gamma_5] s + \bar{\tau} (1 - \gamma_5) \nu_\ell \cdot \bar{u} [\hat{\epsilon}_s - \hat{\epsilon}_p \gamma_5] s + 2\hat{\epsilon}_T \bar{\tau} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} s \Big] + \text{h.c.}$$

Best fit values	$\hat{\epsilon}_S$	$\hat{\epsilon}_T$	χ^2	χ^2 in the SM
Excluding $i = 5, 6, 7$ bins	$(1.3 \pm 0.9) \times 10^{-2}$	$(0.7 \pm 1.0) \times 10^{-2}$	[72, 73]	[74, 77]
Including $i = 5, 6, 7$ bins	$(0.9 \pm 1.0) \times 10^{-2}$	$(1.7 \pm 1.7) \times 10^{-2}$	[83, 86]	[91, 95]

Complementary to kaon and hyperon data analyses

τ 's @ LHC

Excellent signature to probe New Physics

Difficult to identify light objects (Z,W[±]) with only Jets QCD Jets orders of magnitude larger Must rely on leptons

- LHC produces high-momenta τ's
 Tightly collimated decay products (mini-jet like)
 Momentum reconstruction possible
- Low multiplicity. Good tagging efficiency

Polarization information

❑ Heaviest lepton coupling to the Higgs (4th H Br)

39

Flavour-Violating Higgs Couplings

Effective Field Theory Analysis

$$\mathcal{H}_{eff}^{b \to c\ell\nu} = \frac{4G_F}{\sqrt{2}} V_{cb} \left[\left(1 + C_{V_L} \right) \mathcal{O}_{V_L} + C_{V_R} \mathcal{O}_{V_R} + C_{S_R} \mathcal{O}_{S_R} + C_{S_L} \mathcal{O}_{S_L} + C_T \mathcal{O}_T \right] + \text{h.c.}$$

 $\mathcal{O}_{V_{L,R}} = (\bar{c} \gamma^{\mu} b_{L,R}) \left(\bar{\ell}_{L} \gamma_{\mu} \nu_{\ell L} \right), \qquad \mathcal{O}_{S_{L,R}} = (\bar{c} b_{L,R}) \left(\bar{\ell}_{R} \nu_{\ell L} \right), \qquad \mathcal{O}_{T} = (\bar{c} \sigma^{\mu\nu} b_{L}) \left(\bar{\ell}_{R} \sigma_{\mu\nu} \nu_{\ell L} \right)$

Many analyses (usually with single operator/mediator and partial data information) Freytsis et al, Bardhan et al, Cai et al, Hu et al, Celis et al, Datta et al, Bhattacharya et al, Alonso et al, ...

Global fit to all data

(q² distributions included)

Murgui-Peñuelas-Jung-Pich, 1904.09311

$F_L^{D^*}$, \mathcal{B}_{10}	Min 1	Min 2	
$\chi^2/{ m d.o.f.}$	37.4/54	40.4/54	
C_{LL}^V C_{RL}^S C_{LL}^S C_{LL}^T	$\begin{array}{r} 0.09 \begin{array}{c} + \ 0.13 \\ - \ 0.12 \\ 0.09 \begin{array}{c} + \ 0.12 \\ 0.09 \begin{array}{c} - \ 0.61 \\ - \ 0.14 \begin{array}{c} + \ 0.52 \\ - \ 0.07 \\ 0.008 \begin{array}{c} + \ 0.046 \\ - \ 0.044 \end{array}$	$\begin{array}{r} 0.34 \begin{array}{r} + \ 0.05 \\ - \ 0.07 \\ - \ 0.07 \\ - \ 0.07 \\ - \ 0.30 \begin{array}{r} + \ 0.48 \\ - \ 0.07 \\ - \ 0.50 \\ 0.093 \begin{array}{r} + \ 0.029 \\ - \ 0.030 \end{array}$	${\cal B}(B_{\cal C} o au ar{ u}) < 10\%$ $F_{L}^{D^{st}}$ included

A. Pich

$B \rightarrow D^* \ell \nu$ Observables with different FFs

Smaller [larger] discrepancy on R(D*) [R(D)] would bring back a possible new-physics scalar explanation

τ Data Samples

ALEPH:	3.3 · 10 ⁵ reconstructe	ed τ decays
BaBar / Belle:	$1.4 \cdot 10^9$ $\tau^+ \tau^-$ pairs	
Belle-II:	4.6 \cdot 10 ¹⁰ $\tau^+\tau^-$ pairs	
sτcF:	2.1 \cdot 10 ¹⁰ $\tau^+\tau^-$ pairs	(10 ⁸ near threshold)

Luminosity (10³⁵ cm⁻² s⁻¹) is important. Systematics also!

Advantages of the threshold región:

- Ability to measure backgrounds (running below threshold)
- Free of heavy quark backgrounds
- Single-Tagging Precise measurement of absolute branching fractions
- Monochromatic spectra for two-body decays (π, K)

 τ Physics