CHARM HADRON LIFETIMES AND
 Do-D0 MIXING

BLAZENKA MELIC
Theoretical Physics Division
Rudjer Boskovic Institute, Zagreb IB

LIFETIMES OF CHARMED HADRONS

c-MESONS

$$
\begin{aligned}
& D^{+}(\bar{c} d) \\
& D^{0}(\bar{c} u) \\
& D_{s}^{0}(\bar{c} s)
\end{aligned}
$$

c-BARYONS

$\Lambda_{c}^{+}(c u d)$
$\Xi_{c}^{+}(c u s)$
$\Xi_{c}^{0}(c d s)$

$$
\Omega_{c}^{0}(c s s)
$$

Guberina, Rückl, Trampetić, Z. Phys. C 33 (1986) 297 Shifman, Voloshin, Sov. Phys. JETP 64 (1986) 698 Guberina, Melic, 9704445
H-Y Cheng, 9704260
H-Y Cheng, 1807.00916
H-Y Cheng, C-W Liu, 2305.00665

cc-BARYONS

$$
\begin{aligned}
& \Xi_{c c}^{++}(c c s) \\
& \Xi_{c c}^{+}(c c d) \\
& \Omega_{c c}^{+}(c c s)
\end{aligned}
$$

Kiselev, Likhoded, Onishchenko, 9807354 Guberina, Melic, Stefancic, 9901323 H-Y Cheng, Y-L Shi, 1809.08102

EXPERIMENTAL SITUATION - CHARMED MESONS

practically unchanged lifetime pattern since 1980‘s
broad spread of lifetimes of singly CHARMED MESONS

$$
\frac{\tau\left(D^{+}\right)}{\tau\left(D^{0}\right)}=2.54 \pm 0.02
$$

$$
\frac{\tau\left(D_{s}^{+}\right)}{\tau\left(D^{0}\right)}=1.23 \pm 0.01
$$

EXPERIMENTAL SITUATION - CHARMED BARYONS

large spread among lifetimes of singly charmed hadrons:

EXPERIMENTAL SITUATION - DOUBLY CHARMED BARYONS

THEORY: TOTAL DECAY WIDTH $\boldsymbol{\square}$ LIFETIMES

$$
\frac{1}{\tau(H)}=\Gamma(H)=\frac{1}{2 m_{H}}\langle H| \mathcal{T}|H\rangle
$$

$$
\mathcal{T}=\operatorname{Im} i \int d^{4} x T\left[\mathcal{H}_{e f f}(x) \mathcal{H}_{e f f}(0)\right] \quad \text { forward-scattering amplitude }
$$

$\mathcal{H}_{e f f}=$ weak effective hamiltonian for a heavy Q decay

$$
\begin{aligned}
\mathcal{H} & =\frac{G_{F}}{\sqrt{2}}[\sum_{q, q^{\prime}=d, s} V_{c q} V_{u q^{\prime}}^{*}\left(C_{1}(\mu) Q_{1}^{\left(q q^{\prime}\right)}+C_{2}(\mu) Q_{2}^{\left(q q^{\prime}\right)}\right)-\underbrace{\substack{k=0, s}}_{\substack{k=3 \\
V_{u b} V_{c b}^{*}}} C_{k}(\mu) Q_{k} \\
& \left.+\sum_{\substack{q=d, s \\
\ell=e, \mu}} V_{c q} Q^{(q \ell)}\right],
\end{aligned}
$$

WEAK HAMILTONIAN DIM6 and DIM7 OPERATORS

$$
Q_{1}^{\left(q q^{\prime}\right)}=\left(\bar{c}^{i} \gamma_{\mu}\left(1-\gamma_{5}\right) q^{j}\right)\left(\bar{q}^{j} \gamma^{\mu}\left(1-\gamma_{5}\right) u^{i}\right), \quad+\text { color-octet operators }
$$

$\operatorname{Dim} 6$ operators: $\quad Q_{2}^{\left(q q^{\prime}\right)}=\left(\bar{c}^{i} \gamma_{\mu}\left(1-\gamma_{5}\right) q^{i}\right)\left(\bar{q}^{\prime j} \gamma^{\mu}\left(1-\gamma_{5}\right) u^{j}\right), \quad+\mu$-running and mixing

$$
Q_{\mathrm{SL}}^{(q \ell)}=\left(\bar{c} \gamma_{\mu}\left(1-\gamma_{5}\right) q\right)\left(\bar{\ell} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{\ell}\right)
$$

$$
\begin{aligned}
& P_{1}^{q}=m_{q}\left(\bar{c}_{i}\left(1-\gamma_{5}\right) q_{i}\right)\left(\bar{q}_{j}\left(1-\gamma_{5}\right) c_{j}\right), \\
& P_{2}^{q}=\frac{1}{m_{Q}}\left(\bar{c}_{i} \overleftarrow{D_{\rho}} \gamma_{\mu}\left(1-\gamma_{5}\right) D^{\rho} q_{i}\right)\left(\bar{q}_{j} \gamma^{\mu}\left(1-\gamma_{5}\right) c_{j}\right),
\end{aligned}
$$

$\operatorname{Dim} 7$ operators: $\quad P_{3}^{q}=\frac{1}{m_{Q}}\left(\bar{c}_{i} \overleftarrow{D}_{\rho}\left(1-\gamma_{5}\right) D^{\rho} q_{i}\right)\left(\bar{q}_{j}\left(1+\gamma_{5}\right) c_{j}\right)$,

$$
\begin{aligned}
S_{1}^{q} & =m_{q}\left(\bar{c}_{i}\left(1-\gamma_{5}\right) t_{i j}^{a} q_{j}\right)\left(\bar{q}_{k}\left(1-\gamma_{5}\right) t_{k l}^{a} c_{l}\right) \\
S_{2}^{q} & =\frac{1}{m_{Q}}\left(\bar{c}_{i} \overleftarrow{D}_{\rho} \gamma_{\mu}\left(1-\gamma_{5}\right) t_{i j}^{a} D^{\rho} q_{j}\right)\left(\bar{q}_{k} \gamma^{\mu}\left(1-\gamma_{5}\right) t_{k l}^{a} c_{l}\right) \\
S_{3}^{q} & =\frac{1}{m_{Q}}\left(\bar{c}_{i} \overleftarrow{D}_{\rho}\left(1-\gamma_{5}\right) t_{i j}^{a} D^{\rho} q_{j}\right)\left(\bar{q}_{k}\left(1+\gamma_{5}\right) t_{k l}^{a} c_{l}\right)
\end{aligned}
$$

+ color-octet operators
+ non-local operators - reabsorbed into dim6 matrix elements (proven for mesons)

HEAVY QUARK EXPANSION (HQE) - systematic expansion in $\Lambda_{\mathrm{QCD}} / m_{\mathrm{Q}}$ and a_{s}

$$
\mathcal{T}=\left(\mathcal{C}_{3} \mathcal{O}_{3}+\frac{\mathcal{C}_{5}}{m_{Q}^{2}} \mathcal{O}_{5}+\frac{\mathcal{C}_{6}}{m_{Q}^{3}} \mathcal{O}_{6}+\ldots\right)+16 \pi^{2}\left(\frac{\tilde{\mathcal{C}}_{6}}{m_{Q}^{3}} \tilde{\mathcal{O}}_{6}+\frac{\tilde{\mathcal{C}}_{7}}{m_{Q}^{4}} \tilde{\mathcal{O}}_{7}+\ldots\right)
$$

LEADING NON-SPECTATOR

 CONTRIBUTION
\downarrow

NON-LEADING NON-SPECTATOR CONTRIBUTION - from 90-ies; HQE

FOUR-QUARK SPECTATOR CONTRIBUTIONS - ENHANCED

\downarrow

$\mathcal{T}=\left(\mathcal{C}_{3} \mathcal{O}_{3}+\frac{\mathcal{C}_{5}}{m_{Q}^{2}} \mathcal{O}_{5}+\frac{\mathcal{C}_{6}}{m_{Q}^{3}} \mathcal{O}_{6}+\ldots\right)+16 \pi^{2}\left(\frac{\tilde{\mathcal{C}}_{6}}{m_{Q}^{3}} \tilde{\mathcal{O}}_{6}+\frac{\tilde{\mathcal{C}}_{7}}{m_{Q}^{4}} \tilde{\mathcal{O}}_{7}+\ldots\right)$ WILSON COEFF. $\quad \mathcal{C}_{i}=\mathcal{C}_{i}^{(0)}\left(\mu, \mu_{0}\right)+\mathcal{C}_{i}^{(1)}\left(\mu, \mu_{0}\right) \alpha_{s}(\mu)+\mathcal{C}_{i}^{(2)}\left(\mu, \mu_{0}\right) \alpha_{s}(\mu)^{2}+\ldots$, matrix elements of various \mathcal{O} operators are needed

$$
\Gamma(H)=\Gamma_{0}\left[c_{3}+\frac{c_{\pi} \mu_{\pi}^{2}+c_{G} \mu_{G}^{2}}{m_{Q}^{2}}+\frac{c_{\rho} \rho_{D}^{3}}{m_{Q}^{3}}+\cdots\right.
$$

$$
\Gamma_{0}=\frac{G_{F}^{2} m_{Q}^{5}}{192 \pi^{3}}
$$

$$
\left.+\frac{16 \pi^{2}}{2 m_{H}}\left(\sum_{i, q} \frac{c_{6, i}^{q}\langle H| O_{i}^{q}|H\rangle}{m_{Q}^{3}}+\sum_{i} \frac{c_{7, i}^{q}\langle H| P_{i}^{q}|H\rangle}{m_{Q}^{4}}+\ldots\right)\right]
$$

DECAY RATE has universal leading contribution to all hadrons (up to mass corrections in \mathbf{c}_{3}) $\sim m_{Q}^{5}$

A BIT OF HISTORY

First FLAVOUR ANOMALIES were connected with lifetimes :

- 80 ' $-\mathrm{T}\left(\mathrm{D}^{+}\right) / \mathrm{T}\left(\mathrm{D}_{0}\right)$ ~ 2.1
- $85^{\prime}-\mathrm{T}\left(\mathrm{D}_{\mathrm{s}}\right) / \mathrm{T}\left(\mathrm{D}_{0}\right) \sim 1.5\left(\right.$ when D_{s} was called F (:))
- 90 ' $-\mathrm{T}\left(\Lambda_{\mathrm{b}}\right) / \mathrm{T}(\mathrm{B}) \sim 0.7-0.8$

NICE EXAMPLE

- 2000 - WA large \rightarrow influence on V_{ub} inclusive

"ANOMALIES" - 1 nd CASE

$$
\mathcal{T}=\left(\mathcal{C}_{3} \mathcal{O}_{3}+\frac{\mathcal{C}_{5}}{m_{Q}^{2}} \mathcal{O}_{5}+\frac{\mathcal{C}_{6}}{m_{Q}^{3}} \sigma_{6}+\ldots\right)+16 \pi^{2}\left(\frac{\tilde{\mathcal{C}}_{6}}{m_{Q}^{3}} \tilde{\mathcal{O}}_{6}+\frac{\tilde{\mathcal{C}}_{7}}{m_{Q}^{4}} \tilde{\mathcal{O}}_{7}+\cdots\right)
$$

Guberina et al 79
Shifman et al 80
$m_{Q}=m_{c}$ - slow convergence; spectator contributions $\sim 1 / m_{c}{ }^{3}$ might BE IMPORTANT - BUT WHY THERE WOULD BE SUCH DIFFERENCE IN D-MESON LIFETIMES?

"ANOMALIES" - 1 nd CASE

unknown pre-HQE 90، unknown
$m_{Q}=m_{c}$ - slow convergence; spectator contributions $\sim 1 / m_{c}{ }^{3}$ might BE IMPORTANT - BUT WHY THERE WOULD BE SUCH DIFFERENCE IN D-MESON LIFETIMES?

$$
\Gamma(H)=\Gamma_{0}\left[c_{3}+\frac{16 \pi^{2}}{2 m_{H}}\left(\sum_{i, q} \frac{c_{6, i}^{q}\langle H| O_{i}^{q}|H\rangle}{m_{Q}^{3}}\right)\right] \quad \begin{array}{ll}
\Gamma\left(\mathrm{D}^{0}\right) & \Gamma\left(\mathrm{D}^{+}\right) \\
& \mathrm{T}\left(\mathrm{D}^{+}\right) \gg \mathrm{T}\left(\mathrm{D}^{0}\right)
\end{array}
$$

weak exchange (WE) $\tilde{C}_{6}^{\mathrm{WE}}$ small

Pauli interference (PI)

"ANOMALIES" - ${ }^{\text {nd }}$ CASE

$$
\mathcal{T}=\left(\mathcal{C}_{3} \mathcal{O}_{3}+\frac{\mathcal{C}_{5}}{\left.\pi_{Q}^{2} \mathcal{O}_{5}+\frac{\mathcal{C}_{6}}{m_{Q}^{3}} \mathcal{O}_{6}+\ldots\right)} \begin{array}{c}
\text { unknown pre-HQE 90، }
\end{array}\right)+16 \pi^{2}\left(\frac{\tilde{\mathcal{C}}_{6}}{m_{Q}^{3}} \tilde{\mathcal{O}}_{6}+\frac{\tilde{\mathcal{C}}_{7}}{m_{Q}^{4}} \tilde{\mathcal{O}}_{7}+\cdots\right)
$$

$m_{Q}=m_{c}$ - slow convergence; spectator contributions $\sim 1 / m_{c}^{3}$ might BE IMPORTANT + SU(3) BREAKING

$$
\mathcal{T}=\left(\mathcal{C}_{3} \mathcal{O}_{3}+\frac{\mathcal{C}_{5}}{m_{Q}^{2}} \mathcal{O}_{5} \frac{\mathcal{C}_{6}}{m_{Q}^{3}} \sigma_{6}+\ldots\right)+16 \pi^{2}\left(\frac{\tilde{\mathcal{C}}_{6}}{m_{Q}^{3}} \tilde{\mathcal{O}}_{6}+\frac{\tilde{\mathcal{C}}_{7}}{\text { unknown pre-HQE 90' } \left._{m_{Q}^{+}}^{\tilde{\mathcal{O}}_{7}}+\cdots\right)}\right. \text { unknown }
$$

$m_{Q}=m_{c}$ - slow convergence; spectator contributions $\sim 1 / m_{c}{ }^{3}$ might BE IMPORTANT + SU(3) BREAKING

$$
\Gamma(H)=\Gamma_{0}\left[c_{3}+\frac{16 \pi^{2}}{2 m_{H}}\left(\sum_{i, q} \frac{c_{6, i}^{q}\langle H| O_{i}^{q}|H\rangle}{m_{Q}^{3}}\right)\right]
$$

$$
\begin{aligned}
\Gamma\left(D^{0}\right)_{W E} & >\Gamma\left(D_{s}\right)_{W A} \\
& T\left(D^{0}\right)<T\left(D_{s}\right)
\end{aligned}
$$

weak exchange (WE)

GOING BACK TO THE PRESENT DEVELOPMENTS

$\Gamma=\Gamma^{\mathrm{NL}}+\Gamma^{\mathrm{SL}}$
$\Gamma^{\mathrm{NL}}=g_{3}^{(0)}+\alpha_{s} g_{3}^{(1)}+\frac{1}{m_{c}^{2}}\left(g_{\pi}^{(0)}+g_{G}^{(0)}\right)+\frac{1}{m_{c}^{3}} g_{\mathrm{Darwin}}^{(0)}+\frac{16 \pi^{2}}{m_{c}^{3}}\left(\tilde{g}_{6}^{(0)}+\alpha_{s} \tilde{g}_{6}^{(1)}+\frac{1}{m_{c}} \tilde{g}_{7}^{(0)}\right)$
$g_{G}^{(1)}$ in NL decays - new ! Mannel, Moreno, Pivovarov 2304.08964 $\Gamma^{\mathrm{SL}}=g_{3}^{(0)}+\alpha_{s} g_{3}^{(1)}+\frac{1}{m_{c}^{2}}\left(g_{\pi}^{(0)}+\alpha_{s} g_{\pi}^{(1)}+g_{G}^{(0)}+\alpha_{s} g_{G}^{(1)}\right)+\frac{1}{m_{c}^{3}} g_{\text {Darwin }}^{(0)}$

$$
+\frac{16 \pi^{2}}{m_{c}^{3}}\left(\tilde{g}_{6}^{(0)}+\alpha_{s} \tilde{g}_{6}^{(1)}+\frac{1}{m_{c}} \tilde{g}_{7}^{(0)}\right)
$$

Semileptonic (SL) modes	
$\Gamma_{3}^{(3)}$	Fael, Schönwald, Steinhauser '20 * ; Czakon, Czarnecki, Dowling '21
$\Gamma_{3}^{(2)}$	Czarnecki, Melnikov, v. Ritbergen, Pak, Dowling, Bonciani, Ferroglia, Biswas, Brucherseifer, Caola '97-'13
$\Gamma_{5}^{(1)}$	Alberti, Gambino, Nandi,
$\Gamma_{6}^{(1)}$	Mannel, Pivovarov, Rosenthal '13-'15
$\Gamma_{7}^{(0)}$	Dassinger, Mannel, Turczyk '06
$\Gamma_{8}^{(0)}$	Mannel, Turczyk, Uraltsev '10

* see also talks by K. Schönwald and M. Fael
** Partial result

Non-leptonic (NL) modes	
$\Gamma_{3}^{(2)}$	Czarnecki, Slusarcyk, Tkachov '05 **
$\Gamma_{3}^{(1)}$	Ho-Kim, Pham, Altarelli, Petrarca, Voloshin, Bagan, Ball, Braun, Gosdzinsky, Fiol, Lenz, Nierste, Ostermaier, Krinner, Rauh '84-'13
$\Gamma_{5}^{(0)}$	Bigi, Uraltsev, Vainshtein, Blok, Shifman '92
$\Gamma_{6}^{(0)}$	Lenz, MLP, Rusov, Mannel, Moreno, Pivovarov '20-'21
$\tilde{\Gamma}_{6}^{(1)}$	Beneke, Buchalla, Greub, Lenz, Nierste, Franco, Lubicz, Mescia, Tarantino, Rauh '02-'13
$\tilde{\Gamma}_{7}^{(0)}$	Gabbiani, Onishchenko, Petrov '03-'04

Maria Laura Piscopo (Siegen U.)

CALCULATION OF MATRIX ELEMENTS

$$
\mathcal{T}=\begin{gathered}
\left(\mathcal{C}_{3} \mathcal{O}_{3}+\frac{\mathcal{C}_{5}}{m_{Q}^{2}} \mathcal{O}_{5}+\frac{\mathcal{C}_{6}}{m_{Q}^{3}} \mathcal{O}_{6}+\ldots\right)+16 \pi^{2}\left(\frac{\tilde{\mathcal{C}}_{6}}{m_{Q}^{3}} \tilde{\mathcal{O}}_{6}+\frac{\tilde{\mathcal{C}}_{7}}{m_{Q}^{4}} \tilde{\mathcal{O}}_{7}+\ldots\right) \\
\Gamma(H)=\frac{1}{2 m_{H}}\langle H| \mathcal{T}|H\rangle
\end{gathered}
$$

NON-SPECTATOR PART:

SPECTATOR PART:

$$
\Gamma(H)=\Gamma_{0}\left[c_{3}+\frac{c_{\pi} \sqrt{\mu_{\pi}^{2}}+c_{G} \sqrt{\mu_{G}^{2}}}{m_{Q}^{2}}+\frac{c_{\phi} \sqrt{\rho_{D}^{3}}}{m_{Q}^{3}}+\ldots\right]+\frac{16 \pi^{2}}{2 m_{H}}\left(\sum_{i, q} \frac{c_{6, i}^{q}\langle H| O_{i}^{q}|H\rangle}{m_{Q}^{3}}+\sum_{i} \frac{c_{7, i}^{q}\langle H| P_{i}^{q}|H\rangle}{m_{Q}^{4}}+\right.
$$

$$
\mu_{\pi}^{2}(H)=\frac{-1}{2 m_{H}}\langle H| \bar{c}_{v}(i D)^{2} c_{v}|H\rangle, \quad \text { kinetic parameter }
$$

$$
\langle H| O_{i}^{q}|H\rangle
$$

$$
\mu_{G}^{2}(H)=\frac{1}{2 m_{H}}\langle H| \bar{c}_{v} \frac{1}{2} \sigma \cdot\left(g_{s} G\right) c_{v}|H\rangle, \quad \text { chromomagnetic parameter }
$$

$$
\langle H| P_{i}^{q}|H\rangle
$$

$\rho_{D}^{3}(H)=\frac{1}{2 m_{H}}\langle H| \bar{c}_{v}\left(i D_{\mu}\right)(i v \cdot D)\left(i D^{\mu}\right) c_{v}|H\rangle \quad$ Darwin term

CALCULATION OF NON-SPECTATOR MATRIX ELEMENTS

NON-SPECTATOR PART: - mainly universal - up to $\operatorname{SU}(3)_{f}$ breaking and differences in spins of hadrons $\mu_{G}^{2} \quad$ application of hadron mass formula: $\quad m_{H}=m_{c}+\bar{\Lambda}+\frac{\mu_{\pi}^{2}(H)}{2 m_{c}}-\frac{\mu_{G}^{2}(H)}{2 m_{c}}+\mathcal{O}\left(\frac{1}{m_{c}^{2}}\right)$
spin factor: $\quad d_{H}=-2\left(S_{H}\left(S_{H}+1\right)-S_{h}\left(S_{h}+1\right)-S_{l}\left(S_{l}+1\right)\right)$

$$
\mu_{G}^{2}(H) \equiv d_{H} \lambda_{2}=d_{H} \frac{m_{H^{*}}^{2}-m_{H}^{2}}{d_{H}-d_{H^{*}}}
$$

H	D	D^{*}	$\Lambda_{c}^{+}, \Xi_{c}^{+}, \Xi_{c}^{0}$	Ω_{c}^{0}	$\Omega_{c}^{0^{*}}$
d_{H}	3	-1	0	4	-2

μ_{π}^{2} HQET SR: $\mu_{\pi}^{2} \geq \mu_{G}^{2}$
ρ_{D}^{3} applying EOM of $\mathrm{G}_{\mu \mathrm{v}}$ and relating it to the dim6 operators:

$$
2 m_{H} \rho_{D}^{3}=g_{s}^{2}\langle H|\left(-\frac{1}{8} O_{1}^{q}+\frac{1}{24} \tilde{O}_{1}^{q}+\frac{1}{4} O_{2}^{q}-\frac{1}{12} \tilde{O}_{2}^{q}\right)|H\rangle+\mathcal{O}\left(1 / m_{c}\right)
$$

$$
\rho_{D}^{3}\left(D_{q}\right)=\frac{g_{s}^{2}}{18} f_{D_{q}}^{2} m_{D_{q}}+\mathcal{O}\left(1 / m_{c}\right)
$$

CALCULATION OF NON-SPECTATOR MATRIX ELEMENTS

NON-SPECTATOR PART:

	D^{0}	D^{+}	D_{s}^{+}	Λ_{c}^{+}	Ξ_{c}^{+}	Ξ_{c}^{0}	Ω_{c}^{0}
$\mu_{G}^{2} / \mathrm{GeV}^{2}$	$0.41(12)$	$0.41(12)$	$0.44(13)$	0	0	0	$0.26(8)$
$\mu_{\pi}^{2} / \mathrm{GeV}^{2}$	$0.45(14)$	$0.45(14)$	$0.48(14)$	$0.50(15)$	$0.55(17)$	$0.55(17)$	$0.55(17)$
$\rho_{D}^{3} / \mathrm{GeV}^{3}$	$0.056(12)$	$0.056(22)$	$0.082(33)$	$0.04(1)$	$0.05(2)$	$0.06(2)$	$0.06(2)$

ρ_{D}^{3} much smaller parameter but with a surprisingly large Wilson coefficient c_{ρ}

- sizable contribution of $1 / \mathrm{m}_{\mathrm{c}}{ }^{3}$; also sizable $\operatorname{SU}(3)_{\mathrm{F}}$ breaking effects

CALCULATION OF SPECTATOR (FOUR-QUARK) MATRIX ELEMENTS

SPECTATOR PART FOR MESONS: - calculation of four-quark matrix elements
$\operatorname{Dim} 6: \quad\left\langle D_{q}\right| \mathcal{O}_{i}^{q}\left|D_{q}\right\rangle=F_{D_{q}}(\mu)^{2} m_{D_{q}} B_{i}^{q}$,
$\left\langle D_{q}\right| \mathcal{O}_{i}^{q^{\prime}}\left|D_{q}\right\rangle=F_{D_{q}}(\mu)^{2} m_{D_{q}} \delta_{i}^{q^{\prime} q}, \quad q \neq q^{\prime}$

$$
F_{D_{q}}(\mu)^{2} \rightarrow f_{D_{q}}^{2} m_{D_{q}}\left(1+\frac{4}{3} \frac{\alpha_{s}\left(m_{c}\right)}{\pi}\right)
$$

HQET bag model parameters or lattice:

$$
B_{1,2}^{q} \quad \epsilon_{1,2}^{q} \equiv B_{3,4}^{q} \quad \delta_{i}^{q^{\prime}} q
$$

> Kirk, Lenz, Rauch, 1711.02100
> King, Lenz, Rauch, 2112.03691
> King et al, 2109.13219

Vacuum insertion approximation (VIA):

$$
B_{i}^{P, R}=1 \quad \epsilon_{i}^{P, R}=0
$$

for color-octet operators
$\operatorname{Dim} 7: \quad\left\langle D_{q}\right| \mathcal{P}_{1}^{q}\left|D_{q}\right\rangle=-m_{q} F^{2} m_{D_{q}} B_{1}^{P}$,
$\left\langle D_{q}\right| \mathcal{P}_{2}^{q}\left|D_{q}\right\rangle=-\bar{\Lambda}_{q} F^{2} m_{D_{q}} B_{2}^{P}$,
$\left\langle D_{q}\right| \mathcal{P}_{2}^{q}\left|D_{q}\right\rangle=-\bar{\Lambda}_{q} F^{2} m_{D_{q}} B_{2}^{P}$,
$\left\langle D_{q}\right| \mathcal{R}_{1}^{q}\left|D_{q}\right\rangle=-F_{D_{q}}^{2} m_{D_{q}}\left(\bar{\Lambda}_{q}-m_{q}\right) B_{1}^{R}$,

$$
\left\langle D_{q}\right| \mathcal{R}_{2}^{q}\left|D_{q}\right\rangle=F_{D_{q}}^{2} m_{D_{q}}\left(\bar{\Lambda}_{q}-m_{q}\right) B_{2}^{R}
$$

$$
F_{D_{q}} \rightarrow f_{D_{q}} \sqrt{m_{D_{q}}}
$$

CALCULATION OF SPECTATOR (FOUR-QUARK) MATRIX ELEMENTS

SPECTATOR PART FOR BARYONS : - calculation of four-quark matrix elements

NR CONSTITUENT QUARK MODEL

$$
\frac{\left\langle\mathcal{B}_{c}\right| O_{i}^{q}\left|\mathcal{B}_{c}\right\rangle}{2 m_{\mathcal{B}_{c}}} \sim\left|\psi_{c q}^{\mathcal{B}_{c}}(0)\right|^{2} \quad \text { and } \quad|\Psi(0)|_{i j}^{2} \sim \delta^{3}(0)
$$

$$
\mathcal{B}_{c} \sim c\left(q_{1} q_{2}\right)
$$

Rujula, Georgi, Glashow 1975

$$
M_{H}=\sum_{i} m_{i}^{H}+\left\langle H_{\mathrm{spin}, \mathrm{H}}\right\rangle
$$

$$
H_{\text {spin, mesons }}=\frac{32 \pi \alpha_{s}}{9} \frac{\left(\vec{s}_{i} \cdot \vec{s}_{j}\right)}{m_{i}^{M} m_{j}^{M}} \delta^{\delta^{3}\left(\vec{r}_{i j}\right)_{\mathrm{M}}}
$$

$$
H_{\text {spin, baryons }}=\sum_{i>j} \frac{16 \pi \alpha_{s}}{9} \frac{\left(\vec{s}_{i} \cdot \vec{s}_{j}\right)}{m_{i}^{\mathcal{B}} m_{j}^{\mathcal{B}}} \delta^{3}\left(\vec{r}_{i j}\right)_{\mathrm{B}}
$$

$$
\left|\Psi_{c q}^{\Lambda_{c}^{+}}(0)\right|^{2}=\frac{4}{3} \frac{M_{\Sigma_{c}^{*}}-M_{\Sigma_{c}}}{M_{D^{*}}-M_{D}}\left|\Psi_{c q}^{D_{q}}(0)\right|^{2} \quad\left|\Psi_{c q}^{D_{q}}(0)\right|^{2}=\frac{1}{12} f_{D_{q}}^{2} m_{D_{q}}
$$

dim 7 operators are expressed similarly, in terms on dim 6 operators as above; e.g. for triplet of baryons:

$$
\left\langle\mathcal{T}_{c}\right| P_{1}^{q}\left|\mathcal{T}_{c}\right\rangle \simeq \frac{1}{2} m_{q}\left|\Psi_{c q}^{\mathcal{T}_{c}}(0)\right|^{2} \quad\left\langle\mathcal{T}_{c}\right| P_{2}^{q}\left|\mathcal{T}_{c}\right\rangle \simeq-\Lambda_{\mathrm{QCD}}\left|\Psi_{c q}^{\mathcal{T}_{c}}(0)\right|^{2}
$$

DIM 7 OPERATORS AND HQET/QCD BASIS OF OPERATORS

In HQET basis of operators there are additional NON-LOCAL OPERATORS at order $1 / m_{Q}{ }^{4}: \quad G_{1}$ and G_{2}

$$
G_{1} \sim i \int d^{4} x T\left\{\mathcal{O}_{1}^{q}(0), \bar{h}_{v}(x) \frac{g_{s}}{2} \sigma \cdot G h_{v}(x)\right\}
$$

IN MESONS:
One can show that they get exactly reabsorbed at $\mathrm{O}\left(1 / m_{Q}{ }^{4}\right)$ in the decay constant to renormalize the HQET (static) decay constant to the QCD one:

$$
\underbrace{F_{D}^{2}}_{\text {HQET }}(1-\frac{\bar{\Lambda}}{m_{c}}+\underbrace{\frac{2 G_{1}}{m_{c}}+\frac{12 G_{2}}{m_{c}}}_{\text {non-local }})=\underbrace{f_{D}^{2} m_{D}}_{\text {QCD }}+O\left(1 / m_{c}^{2}\right)
$$

IN BARYONS:

Non-local matrix elements are not calculable - NO proof for such a relation

$$
\left|\Psi_{b q}^{\Lambda_{b}^{0}}(0)\right|^{2} \sim F_{B_{q}}^{2}
$$

For charm baryons - we stay in the QCD basis of operators since the convergence of $1 / \mathrm{m}_{\mathrm{c}}$ expansion is slow - dim 7 operators contribute up to 50% of dim 6 operators

PECULARITIES OF DOUBLY-CHARMED BARYONS

Difference to singly-charmed baryons:

- counting contributions (two c quarks decaying)
- choice of hadronic parameters
- diquark system - cc-pair (instead the diquark $\mathrm{q}_{1} \mathrm{q}_{2}$-pair in singly-charmed baryons) $\mathcal{B}_{c c} \sim(c c) q$

Additional contributions to some of the matrix elements, e.g :

$$
\mu_{G}^{2}\left(\mathcal{B}_{c c}\right) \rightarrow \mu_{G(\underline{(D-q)}}^{2}\left(\mathcal{B}_{c c}\right)+\mu_{G(c-c)}^{2}\left(\mathcal{B}_{c c}\right) \quad, \text { similarly for } \mu_{\pi}^{2}\left(\mathcal{B}_{c c}\right)
$$

Additional contributions accessed by NRQCD expansion (up to $\mathrm{O}\left(\mathrm{v}^{7}\right), \Psi_{c}=2$-component NR spinor):
$\bar{c} c=\bar{\Psi}_{c} \Psi_{c}-\frac{1}{2 m_{c}^{2}} \bar{\Psi}_{c}(i \vec{D})^{2} \Psi_{c}+\frac{3}{8 m_{c}^{4}} \bar{\Psi}_{c}(i \vec{D})^{4} \Psi_{c}-\frac{1}{2 m_{c}^{2}} \bar{\Psi}_{c} g_{s} \vec{\sigma} \cdot \vec{B} \Psi_{c}-\frac{1}{4 m_{c}^{3}} \bar{\Psi}_{c} g_{s}(\overrightarrow{\mathcal{D}} \cdot \vec{E}) \Psi_{c}+$.
matrix elements, e.g.:

$$
\left.\frac{\left\langle\mathcal{B}_{c c}\right| \Psi_{c}^{\dagger} g_{s} \vec{\sigma} \cdot \vec{B} \Psi_{c}\left|\mathcal{B}_{c c}\right\rangle}{2 M_{\mathcal{B}_{c c}}}\right|_{c-c}=\frac{4}{9} \frac{g_{s}^{2}}{m_{c}}\left|\Psi_{c c}(0)\right|^{2} \quad \text { where } \quad\left|\Psi_{c c}(0)\right|^{2} \neq\left(\left|\Psi_{\bar{c} c}(0)\right|^{2} \equiv\left|\Psi_{J / \psi}(0)\right|^{2}\right)
$$

SPECTATOR (u,d,s) FOUR-QUARK CONTRIBUTIONS ARE IMPORTANT :

	CE NL $c \rightarrow s \bar{d} u$	$\begin{aligned} & \mathrm{CE} \text { SL } \\ & c \rightarrow s \bar{l} \nu_{l} \end{aligned}$
$\bar{D}^{0}(u \bar{c})$	$\tilde{\Gamma}_{\mathrm{WE}}$	-
$D^{-}(d \bar{c})$	$\tilde{\Gamma}_{\text {PI }}$	-
$D_{s}^{-}(s \bar{c})$	$\tilde{\Gamma}_{\text {WA }}$	$\tilde{\Gamma}_{\text {WA }}^{\text {SL }}$
$\Lambda_{c}^{+}(u d c)$	$\tilde{\Gamma}_{\text {exc }}+\tilde{\Gamma}_{\text {int }}$	-
$\Xi_{c}^{+}(u s c)$	$\tilde{\Gamma}_{\text {int }}{ }^{+}+\tilde{\Gamma}_{\text {int }}{ }^{+}$	$\tilde{\Gamma}_{\text {int }}{ }^{\text {SL }}$
$\Xi_{c}^{0}(d s c)$	$\tilde{\Gamma}_{\text {exc }}+\tilde{\Gamma}_{\mathrm{int}^{+}}$	$\tilde{\Gamma}_{\text {int }}{ }^{\text {SL }}$
$\Omega_{c}^{0}(s s c)$	$\tilde{\Gamma}_{\text {int }}{ }^{+}$	$\tilde{\Gamma}_{\mathrm{int}^{+}}{ }^{+}$

$C E=$ leading; Cabibbo enhanced

int-
Int

MESONS

WE

PI

BARYONS

exc

WA

int+

* effects are different in different mesons * effects are different in different baryons
* no helicity suppression for baryons * effects in SL decays - different BR(SL)!

HEAVY QUARK MASS

$\Gamma_{0}=\frac{G_{F}^{2} m_{Q}^{5}}{192 \pi^{3}}$

POLE mass:

$$
\begin{aligned}
m_{c}^{\mathrm{pole}} & =\bar{m}_{c}\left(\bar{m}_{c}\right)\left[1+\frac{4}{3} \frac{\alpha_{s}\left(\bar{m}_{c}\right)}{\pi}+10.3\left(\frac{\alpha_{s}\left(\bar{m}_{c}\right)}{\pi}\right)^{2}+116.5\left(\frac{\alpha_{s}\left(\bar{m}_{c}\right)}{\pi}\right)^{3}+\ldots\right] \\
& =\bar{m}_{c}\left(\bar{m}_{c}\right)(1+0.16+0.15+0.21+\ldots)
\end{aligned}
$$

IR renormalon - divergent series starting from
renormalon-free mass definitions: the 3rd (5th)-loop for $m_{c}\left(m_{b}\right)$

$$
\begin{aligned}
m_{c}^{X}\left(\mu_{f}\right) & =m_{c}^{\text {pole }}-\delta m_{c}^{X}\left(\mu_{f}\right) \\
& =\bar{m}_{c}\left(\bar{m}_{c}\right)+\bar{m}_{c}\left(\bar{m}_{c}\right) \sum_{n=1}^{\infty}\left[c_{n}\left(\mu, \bar{m}_{c}\left(\bar{m}_{c}\right)\right)-\frac{\mu_{f}}{\bar{m}_{c}\left(\bar{m}_{c}\right)} s_{n}^{X}\left(\mu / \mu_{f}\right)\right] \alpha_{s}^{n}(\mu)
\end{aligned}
$$

- subtraction of IR renomalons
- rearrangement of α_{S} expansion - relevant for α_{S}-corrections in c_{3} and c_{6} terms

CHARM QUARK MASS

$\bar{m}_{c}\left(\bar{m}_{c}\right)=1.28 \mathrm{GeV}$	1-loop	2-loop	3-loop	4-loop
$m_{c}^{\text {pole }}$	1.49	1.68	1.95	2.43
m_{c}^{kin}	1.36	1.39	1.40	-
m_{c}^{MSR}	1.33	1.35	1.36	1.36

we provide results for different mass schemes... no large differences in the final results - rearrangements among $1 / m_{C}$ and α_{S}-expansion !

RESULTS

RESULTS FOR BARYONS

Lifetime ratios of a baryon \mathcal{B}_{c}

$$
\frac{\tau\left(\mathcal{B}_{c}\right)}{\tau\left(\Lambda_{c}^{+}\right)} \equiv \frac{1}{1+\left(\Gamma^{\operatorname{th}}\left(\mathcal{B}_{c}\right)-\Gamma^{\operatorname{th}}\left(\Lambda_{c}^{+}\right)\right) \tau^{\exp }\left(\Lambda_{c}^{+}\right)}
$$

- some uncertainties cancel in the ratios

Inclusive SL branching ratios (e only) for \mathcal{B}_{C} :

$$
B R\left(\mathcal{B}_{c} \rightarrow X e \nu\right) \equiv \Gamma\left(\mathcal{B}_{c} \rightarrow X e \nu\right) \tau^{\exp }\left(\mathcal{B}_{c}\right)
$$

CHARMED BARYONS

\square Our Results (MSR) Gratrex, Melic, Nisandzic, 2204.11935

$$
\tau\left(\Xi_{c}^{0}\right)<\tau\left(\Lambda_{c}^{+}\right)<\tau\left(\Omega_{c}^{0}\right)<\tau\left(\Xi_{c}^{+}\right)
$$

\square Experiment

- confirmed by Belle-II, aug. 2022

CHARMED BARYONS - SL BRs

MSR scheme:

$B R\left(\Lambda_{c}^{+} \rightarrow X e \nu\right) / \%$	$4.28_{-0.37-0.30}^{+0.47+0.39}$
$B R\left(\Xi_{c}^{+} \rightarrow X e \nu\right) / \%$	$14.95_{-2.45-1.50}^{+2.66+1.59}$
$B R\left(\Xi_{c}^{0} \rightarrow X e \nu\right) / \%$	$5.06_{-0.84-0.51}^{+0.91+0.54}$
$B R\left(\Omega_{c}^{0} \rightarrow X e \nu\right) / \%$	$11.19_{-2.89-2.09}^{+3.01+1.94}$

SL decays are important to assess the validity of HQE in charmed baryons

- experimental measurements of $\mathrm{BR}_{\mathrm{SL}}\left(\overline{\mathrm{C}}_{\mathrm{c}}{ }^{+}\right), \mathrm{BR}_{\mathrm{SL}}\left(\bar{\Xi}_{\mathrm{c}}{ }^{0}\right)$ and $\mathrm{BR}_{\mathrm{SL}}\left(\Omega_{\mathrm{c}}{ }^{0}\right)$ are needed

CHARMED MESONS

Lifetime ratios :

$$
\frac{\tau\left(D_{(s)}^{+}\right)}{\tau\left(D^{0}\right)}=1+\left(\Gamma^{\operatorname{th}}\left(D^{0}\right)-\Gamma^{\operatorname{th}}\left(D_{(s)}^{+}\right)\right) \tau^{\exp }\left(D_{(s)}^{+}\right)
$$

- some uncertainties cancel in the ratios

Inclusive SL branching ratios (e only) :

$$
B R^{(e)}(D)=\Gamma^{(e)}(D) \tau^{\exp }(D)
$$

$$
\frac{\Gamma^{(e)}\left(D_{(s)}^{+}\right)}{\Gamma^{(e)}\left(D^{0}\right)}=1+\left(\Gamma^{(e) \mathrm{th}}\left(D_{(s)}^{+}\right)-\Gamma^{(e) \mathrm{th}}\left(D^{0}\right)\right)\left(\frac{\tau\left(D^{0}\right)}{B R^{(e)}\left(D^{0}\right)}\right)^{\exp }
$$

SINGLY CHARMED HADRON LIFETIMES - CONCLUSIONS

King, Lenz, Piscopo, Rauh, Rusov, 2109.13219
Gratrex, Melic, Nisandzic 2204.11935

satisfactory agreement with the experiment!
inclusion of newly calculated NLO corrections to μ_{G}^{2} (Mannel, Moreno, Pivovarov 2304.08964)
would probably significantly reduce uncertainty

DOUBLY CHARMED HADRON LIFETIMES - CONCLUSIONS

Dulibic, Gratrex, Melic, Nisandzic 2305.02243

$$
\tau\left(\Xi_{c c}^{++}\right)
$$

is the only measured doubly-charmed baryon lifetime (LHCb 2018)

- good agreement
$\tau\left(\Xi_{c c}^{+}\right)$and $\tau\left(\Omega_{c c}^{+}\right)$measurement at LHCb Run-3 is feasible

CONCLUSIONS - CHARM HADRON LIFETIMES

O up-to-date results for lifetimes of weakly decaying hadrons with a single charm quark, with most complete set of contributions provided

- results compatible with experiment, albeit with large uncertainties, and favouring recent LHCb (2018/20) and Belle-II (8/2022) result for $\mathrm{T}\left(\Omega^{0}{ }_{\mathrm{c}}\right)$ lifetime ($\sim 4 \times$ bigger than old measurements)
\bigcirc difficulty in predicting $\mathrm{T}^{\left(\mathrm{D}^{+}\right) \text {- only marginally compatible - huge negative Pauli interference contribution }}$
- predictions for unmeasured $\mathrm{BR}_{\mathrm{SL}}(\mathrm{H})$ are important for complete assessment
- conclusions above are largely independent of the charm mass scheme
- HQE seems to work for charm

OUTLOOK

extending available contributions in $1 / m_{Q}$ and α_{s} series

large uncertainties mean theory cannot compete with experiment - more control of hadronic parameters needed :
I. lattice determination of $\left\langle\tilde{\mathcal{O}}_{6}\right\rangle$ planned (U Siegen)
II. higher α_{s} corrections planned (KIT) - NLO of $4 q$-dim7, NNLO of NL-dim3 etc..
III. exp. (BESIII, Belle II...) determination of the kinetic, chromomagnetic and Darwin parameter from SL decays? Too sensitive to four-quark "leakage"?
question of applicability of heavy quark approach to charm remains open

$$
\Rightarrow \alpha_{s}\left(m_{c}\right)=0.33, \Lambda_{\mathrm{QCD}} / \mathrm{m}_{\mathrm{c}}=0.30 \text { too large? }\left(\mathrm{vs} \alpha_{\mathrm{s}}\left(\mathrm{~m}_{\mathrm{b}}\right)=0.22, \Lambda_{\mathrm{QCD}} / \mathrm{m}_{\mathrm{b}}=0.10\right)
$$

- spectator contributions dominate over the leading free charm decay
theoretical improvements:
- revisiting formulation of HQE in charm mass?
(Mannel et al 2103.02058 - treating 4-q contributions as a part of the leading term?)
- testing quark-hadron duality violation? (seems to work for beauty)

$\mathrm{D}^{0}-\overline{\mathbf{D}^{0}}$ MIXING - STATUS

- an incomplete, personal look -

BASICS

neutral mesons mix:

$$
i \frac{\partial}{\partial t}\binom{D^{0}}{\bar{D}^{0}}=\left(M-\frac{i}{2} \Gamma\right)\binom{D^{0}}{\bar{D}^{0}}=\left(\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{12}^{*} & M_{11}
\end{array}\right)-\frac{i}{2}\left(\begin{array}{ll}
\Gamma_{11} & \Gamma_{12} \\
\Gamma_{12}^{*} & \Gamma_{11}
\end{array}\right)\right)\binom{D^{0}}{\bar{D}^{0}}
$$

off-shell states contribute
on -shell states contribute

parameters:

$$
x_{12}=\frac{2\left|M_{12}\right|}{\Gamma_{D^{0}}} \quad y_{12}=\frac{2\left|\Gamma_{12}\right|}{\Gamma_{D^{0}}} \quad+\text { possible (indirect) CPV } \quad \phi_{12}=\arg \left(\frac{M_{12}}{\Gamma_{12}}\right)
$$

$$
\begin{aligned}
\left|D_{1,2}\right\rangle & =p\left|D^{0}\right\rangle \pm q\left|\bar{D}^{0}\right\rangle \\
\Delta M & \equiv M_{1}-M_{2}, \\
\Delta \Gamma & \equiv \Gamma_{1}-\Gamma_{2} .
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
\Delta M_{D}=2\left|M_{12}^{D}\right| \cdot\left(1+O\left(\left(\phi_{12}^{D}\right)^{2}\right)\right) \\
\Delta \Gamma_{D}=2\left|\Gamma_{12}^{D}\right| \cdot\left(1+O\left(\left(\phi_{12}^{D}\right)^{2}\right)\right)
\end{aligned} \quad \Rightarrow \quad x \approx x_{12}=2 \frac{\left|M_{12}\right|}{\Gamma_{D}} \quad y \approx y_{12}=\frac{\left|\Gamma_{12}\right|}{\Gamma_{D}}
$$

(more general approach with two phases Kagan, Silvestrini, 2001.07207:

$$
\phi_{12} \equiv \arg \left(\frac{M_{12}}{\Gamma_{12}}\right)=\phi^{M}-\phi^{\Gamma}
$$

HFLAV fits, 2206.07501 - clear evidence for $\mathrm{D}^{0}-\bar{D}^{0}$ mixing - no-mixing point $\mathrm{x}=\mathrm{y}=0$ is excluded at $>11.5 \sigma$

no direct evidence for CPV :

$$
\begin{aligned}
& x=\frac{\Delta M}{\Gamma_{D}}=0.409_{-0.049}^{+0.048} \% \\
& y=\frac{\Delta \Gamma}{\Gamma_{D}}=0.615_{-0.055}^{+0.056} \% \\
& \phi\left(^{\circ}\right)=-2.5 \pm 1.2
\end{aligned}
$$

$$
2 y_{C P}=(|q / p|+|p / q|) y \cos \phi
$$

$$
-(|q / p|-|p / q|) x \sin \phi
$$

$$
y_{C P}=(0.719 \pm 0.113) \%
$$

CP asymmetries in $\mathrm{D}^{0}, \overline{\mathbf{D}^{0}}$ meson decays:

$$
A_{C P}(i \rightarrow f) \equiv \frac{\left.|\langle f| T| i\rangle\left.\right|^{2}-|\langle\bar{f}| T| \bar{i}\right\rangle\left.\right|^{2}}{\left.|\langle f| T| i\rangle\left.\right|^{2}+|\langle\bar{f}| T| \bar{i}\right\rangle\left.\right|^{2}}=\Sigma_{j}\left[p_{j} \sin \underline{\left(\underline{\Delta \delta_{j}}\right)} \sin \underline{\operatorname{strong}} \underline{\left.\underline{\Delta \phi_{j}}\right)}\right]_{i \rightarrow f}
$$

$$
A_{\Gamma} \equiv \frac{\tau\left(\bar{D}^{0} \rightarrow h^{+} h^{-}\right)-\tau\left(D^{0} \rightarrow h^{+} h^{-}\right)}{\tau\left(\bar{D}^{0} \rightarrow h^{+} h^{-}\right)+\tau\left(D^{0} \rightarrow h^{+} h^{-}\right)}
$$

$$
A_{\Gamma}=-a_{C P}^{\mathrm{ind}}-a_{C P}^{\mathrm{dir}} y_{C P}
$$

$$
\Delta A_{C P} \equiv A_{C P}\left(K^{+} K^{-}\right)-A_{C P}\left(\pi^{+} \pi^{-}\right)
$$

$$
\triangleleft \Delta A_{C P} \approx \Delta a_{C P}^{\operatorname{dir}}\left(1+y_{C P} \frac{\overline{\langle t\rangle}}{\tau}\right)+a_{C P}^{\operatorname{ind}} \frac{\Delta\langle t\rangle}{\lambda}
$$

$$
\begin{aligned}
a_{C P}^{\text {ind }} & =(-0.010 \pm 0.012) \% \\
\Delta a_{C P}^{\text {dir }} & =(-0.161 \pm 0.028) \%
\end{aligned}
$$

THEORY : an order of magnitude smaller result -> LARGE NON-PERTURBATIVE CONTRIBUTIONS/FSI NEEDED

LCSR - $|\mathrm{P} / \mathrm{T}|_{\pi \pi, ~ к к}$ calculation, arbitrary strong phase
Khodhjamirian, Petrov, 1706.07780
Dispersion relations - FSI/rescattering phases
Pich, Solomonidi, Silva, 2305.11951

see also "Recent advances in charm mixing and CP violation at LHCb", T. Pajero, 2208.05769

LHCb 2021 at 10th CKM2020(2021), arXiv: 2106.03744
Angelo Carbone
First observation of the mass difference between D^{0} and $\overline{\mathrm{D}^{0}}$:
$\mathrm{m}_{1}-\mathrm{m}_{2}=6.4 \times 10^{-6} \mathrm{eV}$

```
    =0.00000000000000000000000000000000000001 grams (1\times1\mp@subsup{0}{}{-38}\textrm{g})
```

$\left(m_{1}-m_{2}\right) /\left(D^{0}\right.$ mass $)=3 \times 10^{-15}$
$B-\bar{B}, B_{s}-\bar{B}_{s}$ and $K-\bar{K}$ mixing are well under control - WHY IS SO DIFFICULT TO EXPLAIN D- \bar{D} MIXING?
A LONG-STANDING PUZZLE - how to explain theoretically

$$
\begin{aligned}
& y=\frac{\Delta \Gamma}{\Gamma_{D}}=0.615_{-0.055}^{+0.056} \% \\
& x=\frac{\Delta M}{\Gamma_{D}}=0.409_{-0.049}^{+0.048} \%
\end{aligned}
$$

NAIVE HQE APPLICATION:

$$
\Gamma_{12}^{D}=-\lambda_{s}^{2}\left(\Gamma_{s s}^{D}-2 \Gamma_{s d}^{D}+\Gamma_{d d}^{D}\right)+2 \lambda_{s} \lambda_{b}\left(\Gamma_{s d}^{D}-\Gamma_{d d}^{D}\right)-\lambda_{b}^{2} \Gamma_{d d}^{D}
$$

$$
M_{12}^{D}=\lambda_{s}^{2}\left[M_{s s}^{D}-2 M_{s d}^{D}+M_{d d}^{D}\right]+2 \lambda_{s} \lambda_{b}\left[M_{b s}^{D}-M_{b d}^{D}-M_{s d}^{D}+M_{d d}^{D}\right]+\lambda_{b}^{2}\left[M_{b b}^{D}-2 M_{b d}^{D}+M_{d d}^{D}\right]
$$

$$
\Gamma_{12}=\left(2.08 \cdot 10^{-7}-1.34 \cdot 10^{-11} I\right)(1 \text { st term })
$$

$$
-\left(3.74 \cdot 10^{-7}+8.31 \cdot 10^{-7} I\right)(2 \text { nd term })
$$

$$
+\left(2.22 \cdot 10^{-8}-2.5 \cdot 10^{-8} I\right)(3 \mathrm{rd} \text { term })
$$

CKM dominant <-> GIM suppressed CKM suppressed <-> GIM dominant
all three contributions are of the same size and SMALL (although separate amplitudes are large: $\lambda_{s}^{2} \Gamma_{s s}^{D} \tau_{D} \simeq 5.6 y^{e x p}$)
extreme GIM suppression !

$$
y^{\text {naive HQE }} \sim\left(10^{-4}, 10^{-5}\right) y^{\exp }
$$

the matrix element :

$$
2 M_{D}\left(M_{12}-\frac{i}{2} \Gamma_{12}\right)=\left\langle D^{0}\right| \mathcal{H}^{\Delta C=2}\left|\bar{D}^{0}\right\rangle+\sum_{n} \frac{\left\langle D^{0}\right| \mathcal{H}^{\Delta C=1}|n\rangle\langle n| \mathcal{H}^{\Delta C=1}\left|\bar{D}^{0}\right\rangle}{M_{D}-E_{n}+i 0^{+}}
$$

$$
M_{12} \text {, local contribution at }
$$

$$
\mu \sim M_{D}
$$

M_{12}, Γ_{12}, intermediate states ($\pi \pi, \pi K, K K \ldots$) contribution at $\mu \ll M_{D}$

DISPERSIVE APPROACH - x and y are connected

LATTICE /HQET sum rules

$\Delta C=2$ operators only
lattice - Bazavov et al (Fermilab Lattice and MILC) 1706.04622 HQET sum rules - Kirk, Lenz , Rauch, 1711.02100

General solution to the problem in the HQE approach -> LIFTING THE GIM SUPPRESSION

INCLUSIVE HQE APPROACH

- SU(3) breaking by NLO and mass corrections
- inclusion of new, higher operators
- different renormalization scales in the process
- quark-hadron duality violation

Golowich, Petrov, 0506185 - NLO corrections
Bobrowski, Lenz, Riedl, Rohrwild, 0904.3971 - alphaS and mass corrections
Bobrowski, Lenz, Riedl, Rohrwild, 1002.4794
Bigi, Uraltsev, 0005089 - quark-hadron duality; suggestion for higher dim operators Bobrowski, Lenz, Rauh, 1208.6438 - higher dim operators - dim 9 Jubb, Kirk, Lenz, Tetlalmatzi-Xolocotzi, 1603.07770 - quark-hadron duality violation Umeeda, 2106.06215 - quark-hadron duality violation in the t'Hooft model
Lenz, Piscopo, Vlahos, 2007.03022 - different scales in the process

EXCLUSIVE APPROACH

- $\operatorname{SU}(3)$ breaking

Falk, Grossmann, Ligeti, Petrov, 0110317 - SU(3) breaking H-Y Cheng, Chiang, 1005.1106
Jiang, Yu, Qiu, H-n Li, C-D Lu, 1705.07335 - topological amplitudes
Gershon, Libby, Wilkinson, 1506.08594 - inclusion of multi-body states

- quark-hadron duality violation
- topological amplitude approach
- SU(3) breaking through physical thresholds

A BRIEF DISCUSSION FO DIFFERENT APPROACHES

INCLUSIVE APPROACH in general gives the mixing parameters x and/or y still far below the current data
large NLO corrections? $\quad \alpha_{s}\left(m_{c}\right) \approx 0.34$
large mass corrections? $\frac{\Lambda_{Q C D}}{m_{c}} \approx 3 \frac{\Lambda_{Q C D}}{m_{b}}$
QCD corrections lower the GIM suppression of the first term by on power of $z=m_{s}^{2} / m_{c}^{2}$ (from z^{3} to z^{2})
© higher dimensional operators?

Bigi, Uraltsev, 0005089 suggestion for higher dim operators Bobrowski, Lenz, Rauh, 1208.6438-higher dim operators - dim 9
-> an enhancement by a factor of 10 by still below the observation
$\mathrm{SU}(3)$ suppression is softened by cutting one or two quark lines $->\operatorname{dim}=9, \operatorname{dim}=12$ operators $->$ this requires
information on a large number of nonperturbative matrix elements

- quark-hadron duality violation?

Jubb, Kirk, Lenz, Tetlalmatzi-Xolocotzi, 1603.07770
a simple model for duality violation
-> 20% duality violation could explain the width difference

- renormalization scale setting?
different internal quark pairs contribute different channels and their renormalization scale need Lenz, Piscopo, Vlahos, 2007.03022 not to be equal $\rightarrow \quad \mu_{1}^{q_{1} q_{2}}$ instead $\mu_{x}^{s s}=\mu_{x}^{s d}=\mu_{x}^{d d}=\mu$

EXCLUSIVE APPROACH

$$
\begin{aligned}
\Gamma_{12}^{D} & =\sum_{n} \rho_{n}\left\langle\bar{D}^{0}\right| \mathcal{H}_{e f f .}^{\Delta C=1}|n\rangle\langle n| \mathcal{H}_{e f f .}^{\Delta C=1}\left|D^{0}\right\rangle \\
M_{12}^{D} & =\sum_{n}\left\langle\bar{D}^{0}\right| \mathcal{H}_{e f f .}^{\Delta C=2}\left|D^{0}\right\rangle+P \sum_{n} \frac{\left\langle\bar{D}^{0}\right| \mathcal{H}_{e f f .}^{\Delta C=1}|n\rangle\langle n| \mathcal{H}_{e f f .}^{\Delta C=1}\left|D^{0}\right\rangle}{m_{D}^{2}-E_{n}^{2}}
\end{aligned}
$$

(O) $n=$ pi pi, piK, KK,
pi pi pi, pi pi K, pi K K, K K K, pi pi pi pi,....
Falk, Grossmann, Ligeti, Petrov, 0110317 - SU(3) breaking
H-Y Cheng, Chiang, 1005.1106
Gershon, Libby, Wilkinson, 1506.08594-inclusion of multi-body states
-> experimental bounds can be satisfied

O based on topologica parametrization of the amplitudes

DO -> PP, PV, (VV-negligible) modes
\qquad $\underbrace{P(V)}$
\qquad $P^{(V)}$

Jiang, Yu, Qiu, H-n Li, C-D Lu, 1705.07335 - topological amplitudes

-> cannot resolve the problem: y(obtained) $\sim 1 / 3 y(\exp)$

$$
\begin{aligned}
y_{P P}=(0.10 \pm 0.02) \%, y_{P V} & =(0.11 \pm 0.07) \% \\
y_{V V} & =(-0.42 \pm 0.34) \times 10^{-3}
\end{aligned}
$$

topological amplitudes : color-favored tree-emission diagram T color-suppressed tree-emission diagram C W-exchange diagram E
W-annihilation diagram A
naive factorization + nonfactorizable contributions (FSI) are parametrized and determined from the global fit to the data
(H-n Li et al, 1203.3120, 1305.7021) + SU(3) breaking

DISPERSIVE APPROACH Use of the dispersion relation between Δm and $\Delta \Gamma$ (x and y)

O dispersive approach in HQET limit
Falk, Grossmann, Ligeti, Nir, Petrov, 0402204
correlator:

$$
\Sigma_{p_{D}}(q)=i \int \mathrm{~d}^{4} z\left\langle\bar{D}\left(p_{D}\right)\right| T\left[\mathcal{H}_{w}(z) \mathcal{H}_{w}(0)\right]\left|D\left(p_{D}\right)\right\rangle e^{i\left(q-p_{D}\right) \cdot z}
$$

$$
-\frac{1}{2 m_{D}} \Sigma_{p_{D}}\left(p_{D}\right)=\left(\Delta m-\frac{\imath}{2} \Delta \Gamma\right)
$$

general $\Sigma_{p_{D}}(q): \triangleleft \Delta m=-\frac{1}{2 \pi} \mathrm{P} \int_{2 m_{\pi}}^{\infty} \mathrm{d} E\left[\frac{\Delta \Gamma(E)}{E-m_{D}}+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{E}\right)\right]$
with models for $y(E)$, it is possible to get $x \rightarrow x^{\sim} y$ however. the derivation was in HQET limit

O dispersive approach as an inverse problem - the nonperturbative observables at low mass are solved with the perturbative inputs from high mass.

$$
\begin{aligned}
& \Pi\left(q^{2}\right)=\frac{1}{\pi} \int_{t_{\text {min }}}^{\infty} d s \frac{\operatorname{Im} \Pi(s)}{s-q^{2}-i \varepsilon}, M_{12}(s)-\frac{i}{2} \Gamma_{12}(s)=\left\langle D^{0}(s)\right| \mathcal{H}_{w}^{\Delta C=2}\left|\bar{D}^{0}(s)\right\rangle \\
& \operatorname{Re}[\Pi(s)]=\frac{1}{\pi} P \int_{0}^{\infty} \frac{\operatorname{Im}\left[\Pi\left(s^{\prime}\right)\right]}{s-s^{\prime}} d s^{\prime}
\end{aligned}
$$

H-n. Li, Umeeda, Xu, Yu, 2001.04079 H-n. Li, 2208.14798
it is possible to find a solutions $\left\{x\left(m_{D}\right), y\left(m_{D}\right)\right\}$ which accomodates the data: $y\left(m_{D}\right)=0.52 \%, x\left(m_{D}\right)=0.21 \%$

different physical thresholds of various channels introduce $\operatorname{SU}(3)$ breaking; the channel with KK states is a major source of the needed enhancement from the $(S-P)(S-P)$ eff. operator (confirmed by the lattice) - 4 orders of magnitudes larger $y\left(m_{D}\right)$ is obtained which then explains the data

DISPERSIVE APPROACH Use of the dispersion relation between Δm and $\Delta \Gamma$ (x and y)

O dispersive approach in HQET limit
Falk, Grossmann, Ligeti, Nir, Petrov, 0402204
correlator:

$$
\Sigma_{p_{D}}(q)=i \int \mathrm{~d}^{4} z\left\langle\bar{D}\left(p_{D}\right)\right| T\left[\mathcal{H}_{w}(z) \mathcal{H}_{w}(0)\right]\left|D\left(p_{D}\right)\right\rangle e^{i\left(q-p_{D}\right) \cdot z}
$$

$$
-\frac{1}{2 m_{D}} \Sigma_{p_{D}}\left(p_{D}\right)=\left(\Delta m-\frac{\imath}{2} \Delta \Gamma\right)
$$

general $\Sigma_{p_{D}}(q): \triangleleft \Delta m=-\frac{1}{2 \pi} \mathrm{P} \int_{2 m_{\pi}}^{\infty} \mathrm{d} E\left[\frac{\Delta \Gamma(E)}{E-m_{D}}+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{E}\right)\right]$
with models for $y(E)$, it is possible to get $x \rightarrow x^{\sim} y$ however. the derivation was in HQET limit

O dispersive approach as an inverse problem - the nonperturbative observables at low mass are solved with the perturbative inputs from high mass.

$$
\begin{aligned}
& \Pi\left(q^{2}\right)=\frac{1}{\pi} \int_{t_{\text {min }}}^{\infty} d s \frac{\operatorname{Im} \Pi(s)}{s-q^{2}-i \varepsilon}, M_{12}(s)-\frac{i}{2} \Gamma_{12}(s)=\left\langle D^{0}(s)\right| \mathcal{H}_{w}^{\Delta C=2}\left|\bar{D}^{0}(s)\right\rangle \\
& \operatorname{Re}[\Pi(s)]=\frac{1}{\pi} P \int_{0}^{\infty} \frac{\operatorname{Im}\left[\Pi\left(s^{\prime}\right)\right]}{s-s^{\prime}} d s^{\prime}
\end{aligned}
$$

H-n. Li, Umeeda, Xu, Yu, 2001.04079 H-n. Li, 2208.14798
it is possible to find a solutions $\left\{x\left(m_{D}\right), y\left(m_{D}\right)\right\}$ which accomodates the data: $y\left(m_{D}\right)=0.52 \%, x\left(m_{D}\right)=0.21 \%$

different physical thresholds of various channels introduce $\operatorname{SU}(3)$ breaking; the channel with KK states is a major source of the needed enhancement from the $(S-P)(S-P)$ eff. operator (confirmed by the lattice) - 4 orders of magnitudes larger $y\left(m_{D}\right)$ is obtained which then explains the data

Conclusion: $\mathrm{D}^{0}-\overline{\mathbf{D}^{0}}$ MIXING PROBLEM

- STILL LOT OF WORK TO DO -

THANK YOU!

