CHARMED MESON AND BARYON SPECTROSCOPY Selected recent experimental results

Patrick Spradlin on behalf of the LHCb collaboration with input from representatives of Belle and BESIII

11th International Workshop on Charm Physics (CHARM2023) 17-21 July 2023 Siegen, Germany

P. SPRADLIN (GLASGOW)

OPEN CHARM SPECTROSCOPY

OUTLINE

New baryon resonances

NEW CHARMED BARYON AT BELLE: PRL 130 (2023) 3, 031901

ANALYSIS OF $\Sigma_{c}^{++(0)}\pi^{-(+)}$ IN \overline{B}^{0} DECAYS Belle: Phys.Rev.Lett. 130 (2023) 3, 031901 (arXiv:2206.08822 [hep-ex])

Part of an analysis of $\overline{B}{}^0 \rightarrow \Lambda_c^+ \pi^+ \pi^- \overline{\rho}$

- Full Belle $\Upsilon(4S)$ dataset,
- Includes Λ_c^+ reconstructed as $pK^-\pi^+$, pK_s^0 , and $\Lambda\pi^+$.
- Subdecay $\overline{B}{}^0 \rightarrow \Sigma^0_c (\Lambda^+_c \pi^-) \pi^+ \overline{\rho}$
 - Yield from simultaneous fit to
 - Beam-constrained \overline{B}^0 mass, $M_{\rm bc}$,
 - $M(\Lambda_{c}^{+}\pi^{-}).$
 - Subset used in subsequent quasi-3-body analysis: $|M(\Lambda_c^+\pi^-) - m_{PDG}(\Sigma_c^0)| < 14 \,\text{MeV}.$

Similarly for $\overline{B}{}^0 \rightarrow \Sigma_c^{++}(\Lambda_c^+\pi^+)\pi^-\overline{\rho}$.

EVIDENCE FOR A NEW BARYON STATE Belle: Phys.Rev.Lett. 130 (2023) 3, 031901 (arXiv:2206.08822 [hep-ex])

Coincident peaking features in

- $M(\Sigma_{c}^{0}(\Lambda_{c}^{+}\pi^{-})\pi^{+})$, and
- $M(\Sigma_{c}^{++}(\Lambda_{c}^{+}\pi^{+})\pi^{-}).$

Not observed in $\overline{B}{}^0$ and $\Sigma_c^{++(0)}$ mass sidebands.

Provisionally assumed to be a new state,

• Tentatively named $\Lambda_c(2910)^+$.

Fits to combined $M\left(\Sigma_c^{++(0)}(\Lambda_c^+\pi^{-(+)})\pi^{+(-)}\right)$

- 4.2 σ total yield significance,
- $M(\Lambda_c(2910)^+) = 2913.8 \pm 5.6 \pm 3.8 \,\mathrm{MeV}_{\odot}$
- $\Gamma(\Lambda_c(2910)^+) = 51.8 \pm 20.0 \pm 18.8 \,\mathrm{MeV}.$

MORE $\Omega_c(X)^0$ STATES AT LHCb: LHCB-PAPER-2022-043 NEW BARYON RESONANCES

More $\Omega_c(X)^0$ states! LHCb: LHCb-PAPER-2022-043 (ArXiv:2302.04733 [HEP-EX])

Updates Phys.Rev.Lett. 118 (2017) 18, 182001, the analysis of the

 $M(\Xi_{c}^{+}K^{-})$ spectrum, to the full Run 1 + Run 2 data set.

• Approximately 5× more signal due to Run 2 \sqrt{s} and trigger.

Two additional observed peaks!

MASSES AND WIDTHS OF $\Omega_c(X)^0$ STATES LHCb: <u>LHCb-PAPER-2022-043</u> (ARXIV:2302.04733 [HEP-EX])

Masses and widths measured with improved precision over previous measurements.

			Also	
Resonance	<i>m</i> (MeV)	Г (MeV)	seen	
$\Omega_{c}(3000)^{0}$	$3000.44 \pm 0.07 \ ^{+0.07}_{-0.13} \pm 0.23$	$3.83 \pm 0.23 {}^{+1.59}_{-0.29}$	[1],[2]	
$\Omega_{c}(3050)^{0}$	$3050.18 \pm 0.04 {}^{+0.06}_{-0.07} \pm 0.23$	$0.67 \pm 0.17 {}^{+0.64}_{-0.72}$	[1],[2]	
		< 1.8 MeV, 95% C.L.		
$\Omega_{c}(3065)^{0}$	$3065.63 \pm 0.06 \ ^{+0.06}_{-0.06} \pm 0.23$	$3.79 \pm 0.20 {}^{+0.38}_{-0.47}$	[1],[2]	
$\Omega_{c}(3090)^{0}$	$3090.16 \pm 0.11 \stackrel{+0.06}{_{-0.10}} \pm 0.23$	$8.48 \pm 0.44 {}^{+0.61}_{-1.62}$	[1],[2]	
$\Omega_{c}(3119)^{0}$	$3118.98 \pm 0.12 {+0.09 \atop -0.23} \pm 0.23$	$0.60 \pm 0.63 {}^{+0.90}_{-1.05}$		
	0.20	< 2.5 MeV, 95% C.L.		
$\Omega_{c}(3185)^{0}$	$3185.1 \pm 1.7 {}^{+7.4}_{-0.9} \pm 0.2$	$50\pm7~^{+10}_{-20}$		
$\Omega_{c}(3327)^{0}$	$3327.1 \pm 1.2 {+0.1 \atop -1.3} \pm 0.2$	$20 \pm 5 {}^{+\overline{13}}_{-1}$		
[1] Belle $e^+e^- \rightarrow \Xi_c^+K^-X$, Phys.Rev.D 97 (2018) 5, 051102				
[2] LHCb $\Omega_b^- \to \Xi_c^+ K^- \pi^+$, Phys.Rev.D 104 (2021) 9, L091102				

Particle properties

BELLE

MASS AND WIDTH OF Λ_c(2625)⁺ Belle: Phys.Rev.D 107 (2023) 3, 032008 (<u>arXiv:2212.04062 [hep-ex]</u>)

Analysis of
$$\Lambda_c(2625)^+ \rightarrow \Lambda_c^+ \pi^- \pi^+$$

in full Belle dataset

- $\mathcal{L}_{int} = 980 \, \text{fb}^{-1}$,
- Λ_c^+ subdecay to $p^+ K^- \pi^+$,
- Approximately 30k signal decays.

Mass and width of $\Lambda_c(2625)^+$ measured with $M(\Lambda_c^+\pi^-\pi^+)$ distribution

- Kinematic fit of the decay with Λ_c^+ constrained to world average,
- Width consistent with experimental resolution.

	$m(\Lambda_c(2625)^+) - m(\Lambda_c^+)$ (MeV)	$\Gamma(\Lambda_{c}(2625)^{+}) (MeV)$
This result	$341.518 \pm 0.006 \pm 0.049$	< 0.52
PDG 2022 ¹	341.65 ± 0.13	< 0.97

¹PDG 2022 WA dominated by CDF: Phys.Rev.D 84 (2011) 012003

P. Spradlin (Glasgow) Ope	CHARM SPECTROSCOPY	CHARM2023 2023.07.18	9/22
---------------------------	--------------------	----------------------	------

PARTICLE PROPERTIES $\Lambda_c(2625)^+$ PROPERTIES AT BELLE: PRD 107 (2023) 3, 032008

AMPLITUDE ANALYSIS OF $\Lambda_c(2625)^+ \rightarrow \Lambda_c^+ \pi^- \pi^+$ Belle: Phys.Rev.D 107 (2023) 3, 032008 (arXiv:2212.04062 [hep-ex])

 $A_{c}(2625)^{+}$ PROPERTIES AT BELLE: PRD 107 (2023) 3, 032008 PARTICLE PROPERTIES

SIDEBAND ANALYSIS OF $\Lambda_c(2625)^+ \rightarrow \Lambda_c^+ \pi^- \pi^+$ Belle: Phys.Rev.D 107 (2023) 3, 032008 (arXiv:2212.04062 [hep-ex])

Non- $\Lambda_c(2625)^+$ contributions to $\Sigma_c^{++(0)}\pi^{-(+)}$ estimated by analysis of $M(\Lambda_c^+\pi^-\pi^+)$ sidebands,

- 6 sidebands (3 on each side),
- Linear extrapolation to $\Lambda_c(2625)^+$ signal region.

$$\frac{\mathcal{B}(\Lambda_{c}(2625)^{+} \to \Sigma_{c}^{++(0)} \pi^{-(+)})}{\mathcal{B}(\Lambda_{c}(2625)^{+} \to \Lambda_{c}^{+} \pi^{-} \pi^{+})} = \frac{N_{sig}(\Sigma_{c}^{++(0)}) - N_{bkg}(\Sigma_{c}^{++(0)})}{N_{sig}(\Lambda_{c}(2625)^{+})}$$

$$\frac{\mathcal{B}(\Lambda_c(2625)^+ \to \Sigma_c^{++}\pi^-)}{\mathcal{B}(\Lambda_c(2625)^+ \to \Lambda_c^+\pi^-\pi^+)} = (5.13 \pm 0.26 \pm 0.32)\%$$

$$\frac{\mathcal{B}(\Lambda_c(2625)^+ \to \Sigma_c^0 \pi^+)}{\mathcal{B}(\Lambda_c(2625)^+ \to \Lambda_c^+ \pi^- \pi^+)} = (5.19 \pm 0.23 \pm 0.40)\%$$

SPIN AND PARITY OF $D^*_{(s)}$ BESIII: ARXIV:2305.14631 [HEP-EX]

Helicity amplitude analysis in 3.19 fb⁻¹ of e^+e^- at $\sqrt{s} = 4.178$ GeV

$$e^{+}e^{-} \rightarrow \gamma^{*} \rightarrow D^{*0}\overline{D}^{0}, D^{*0} \rightarrow D^{0}\pi^{0}$$

$$e^{+}e^{-} \rightarrow \gamma^{*} \rightarrow D^{*+}D^{-}, D^{*+} \rightarrow D^{+}\pi^{0}$$

$$e^{+}e^{-} \rightarrow \gamma^{*} \rightarrow D^{*+}_{s}D^{-}_{s}, D^{*+}_{s} \rightarrow D^{+}_{s}\gamma$$

$$e^{-}D^{*}_{s} \rightarrow D^{*+}_{s}D^{-}_{s} \rightarrow D^{*+}_{s}D^{+}_{s}\gamma$$

$$P^{*+}_{s} \rightarrow D^{*+}_{s}D^{*+}_{s} \rightarrow D^{*+}_{s}D^{$$

Likelihoods for each natural J^P in $\{1^-, 2^+, 3^-\}$ constructed from helicity amplitudes,

$$\mathcal{L}^{J^{P}} = \prod_{i=1}^{N_{\text{evis}}} \frac{1}{\mathcal{C}} \mathcal{W}^{J^{P}}(\theta_{0}^{i}, \theta_{1}^{i}, \phi_{1}^{i}, m_{12}) = \prod_{i=1}^{N_{\text{evis}}} \frac{1}{\mathcal{C}} \overline{\sum_{m, \lambda_{i}}} \left| \mathcal{A}(m, \lambda_{1}, \theta_{0}^{i}, \theta_{1}^{i}, \phi_{1}^{i}, m_{12}) \right|^{2}$$

where *m* is the helicity of γ^* and λ_1 the helicity of the γ or π^0 from the D^* .

PARTICLE PROPERTIES

 J^P of $D^*_{(s)}$ at BESIII: ARXIV:2305.14631 [HEP-EX]

₩S

SPIN AND PARITY OF $D^*_{(s)}$ BESIII: arXiv:2305.14631 [hep-ex]

For each of D_s^{*+} , D^{*0} , and D^{*+} , $J^P = 1^-$ fits well.

- $J^P = 2^+$ and 3^- tested as 'null hypotheses'
 - Likelihood compared to that of a linear combination of $J^P = 1^-$ and the 'null' J^P .

Process	Hypothesis	$\Delta(-2\ln \mathcal{L})$
*	1 ⁻ over 2 ⁺	1102
$D_s \cdot D_s$	1- over 3-	2104
0م 0*0	1 ⁻ over 2 ⁺	12134
$D^{-1}D^{+1}$	1 ⁻ over 3 ⁻	12096
-0++0-	1 ⁻ over 2 ⁺	11308
	1- over 3-	11222

In all cases, the bare 'null' $J^P = 2^+$ and 3^- disfavored by $> 10\sigma$.

Strong and EM decays

OBS. OF $D^{*0} \rightarrow D^0 e^+ e^-$ AT BESIII: PRD 104 (2021) 11, 112012 STRONG AND EM DECAYS

OBSERVATION AND BR OF $D^{*0} \rightarrow D^0 e^+ e^-$ BESIII: PHYS.REV.D 104 (2021) 11, 112012 (ARXIV:2111.06598 [HEP-EX])

Analysis in $e^+e^- \rightarrow D^{*0}\overline{D}^{*0}$ events from $3.19 \,\mathrm{fb}^{-1}$ at $\sqrt{s} = 4.178 \,\mathrm{GeV}$.

 D^0 reconstructed in decay modes $K^-\pi^+$, $K^{-}\pi^{+}\pi^{0}$, and $K^{-}\pi^{+}\pi^{-}\pi^{+}$.

Backgrounds from $D^{*0} \rightarrow D^0 \gamma$ via $\gamma \rightarrow e^+ e^$ material conversions suppressed by $e^+e^$ vertex cut.

Clear $D^{*0} \rightarrow D^0 e^+ e^-$ peak in each D^0 mode,

• 13.2 σ total statistical significance.

Branching ratio measured relative to $D^{*0} \rightarrow D^0 \gamma$: $rac{\mathcal{B}(D^{*0} \to D^0 e^+ e^-)}{\mathcal{B}(D^{*0} \to D^0 \gamma)} = (11.08 \pm 0.76 \pm 0.49) imes 10^{-3}$

STRONG AND EM DECAYS BF OF $D_s^{*+} \rightarrow D_s^+ \pi^0$ at BESIII: PRD 107 (2023) 3, 032011

BRANCHING FRACTION OF $D_s^{*+} \rightarrow D_s^+ \pi^0$ BESIII: Phys.Rev.D 107 (2023) 3, 032011 (ArXiv:2212.13361 [hep-ex])

Analysis of $e^+e^- \rightarrow D_s^{*+}D_s^-$ events from 7.33 fb⁻¹ at $\sqrt{s} = 4.128$ to 4.226 GeV.

Reconstruct both D_s^+ and D_s^- in each event,

• In decays to either $K^{\pm}K^{\mp}\pi^{\pm}$ or $K^0_{\rm s}K^{\pm}$

Spectrum of squared missing mass,

$$M_{
m miss}^2 \equiv (\sqrt{s} - E_{D_s^+} - E_{D_s^-})^2 - |ec{p}_{D_s^+} + ec{p}_{D_s^-}|^2,$$

• Peaks at 0 for
$$D_s^{*\pm} \rightarrow D_s^{\pm} \gamma$$
,

• Peaks at $m^2_{\pi^0}$ for $D^{*\pm}_s o D^\pm_s \pi^0.$

Cut-and-count methodology,

- Partition into γ and π^0 regions,
- Unfold with an efficiency matrix.

 $rac{D_s^{++} o D_s^{+} \pi^0}{D_s^{++} o D_s^{+} \gamma} = (6.16 \pm 0.43 \pm 0.18)\%$

Doubly-charmed baryons

$\Xi_{\rm cc}$ at LHCb so far

With properties:

- Mass $m = 3621.55 \pm 0.23 \pm 0.30$ MeV (JHEP 02 (2020) 049)
- Lifetime $\tau = 0.256^{+0.024}_{-0.022} \pm 0.014 \, \text{ps}$ (Phys.Rev.Lett. 121 (2018) 5, 052002)

•
$$\left(\frac{\sigma(\Xi_{cc}^{++})\mathcal{B}(\Xi_{cc}^{++}\to\Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+})}{\sigma\Lambda_{c}^{+}}\right)_{\text{fid}} = (2.22 \pm 0.27 \pm 0.29) \times 10^{-4}$$

(Chin.Phys.C 44 (2020) 2, 022001)

OBSERVATION OF $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{\prime+}\pi^{+}$ LHCb:JHEP 05 (2022) 038 (ARXIV:2202.05648 [HEP-EX])

Search in the $\Xi_c^+\pi^+$ mass spectrum (with $\Xi_c^+ \rightarrow \rho K^-\pi^+$),

- Signature of $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{\prime+} \pi^{+}, \ \Xi_{c}^{\prime+} \rightarrow \Xi_{c}^{+} \gamma$ with unreconstructed γ ,
- Appears as a peaking structure at a lower mass than the previously observed $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$ signal.

Analyzed in two statistically independent subsets

10 SEARCH FOR 2 66 AT EFFECT, STIEL 12 (2021)

Search with a two-tiered selection.

Most restrictive: default trigger set,

- Selection and trigger requirements matched to $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+},$
- Best precision/upper limits of production × branching ratio.

Superset: *extended trigger* set.

• More inclusive set of triggers.

Best chance of detecting a signal.

Full analysis, including decision tree of how to present results in all scenarios, fully defined before unblinding. **DOUBLY-CHARMED BARYONS**

CONTINUING SEARCH FOR Ξ_{CC}^+ AT LHCb:, JHEP 12 (2021) 107

COMBINATION OF $\Xi_c^+\pi^-\pi^+$ and $\Lambda_c^+K^-\pi^+$ LHCb:JHEP 12 (2021) 107 (arXiv:2109.07292 [hep-ex])

No evidence for
$$\Xi_{cc}^+ \to \Xi_c^+ \pi^- \pi^+$$
.

Determination of mass-dependent upper limit for

 $\boldsymbol{R} \equiv \frac{\sigma(\boldsymbol{\Xi}_{cc}^{+}) \times \mathcal{B}(\boldsymbol{\Xi}_{cc}^{+} \rightarrow \boldsymbol{\Xi}_{c}^{+} \pi^{-} \pi^{+})}{\sigma(\boldsymbol{\Xi}_{cc}^{++}) \times \mathcal{B}(\boldsymbol{\Xi}_{cc}^{++} \rightarrow \boldsymbol{\Xi}_{c}^{+} \pi^{+})}$

R estimated for several hypothetical lifetimes.

Statistical combination with $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$ search

Sci.China Phys.Mech.Astron. 63 (2020) 2, 221062

Joint fit to the mass spectra.

No evidence for Ξ_{cc}^+

 Largest deviation: 2.9σ after systematics and look-elsewhere. SUMMARY

WRAP-UP AND ACKNOWLEDGMENTS

Our experimental understanding of charm spectroscopy continues to benefit from complementary experiments,

- Direct production in both e^+e^- and pp collisions,
- Production in decay of large *b*-hadron samples.

The continuously increasing sample sizes are furthering both the precision and comprehensiveness of our knowledge.

Large-sample flavor experiments continue to discover new and interesting behaviors of charmed hadrons.

I thank the following for recommending results to include in this talk: Federico Betti (LHCb), Wolfgang Gradi (BESIII), Alexander Lenz, Dominik Mitzel (LHCb), Diego Tonelli (Belle).

P. SPRADLIN (GLASGOW)

OPEN CHARM SPECTROSCOPY