Rare leptonic and semileptonic charm decays at LHCb

Daniel Unverzagt* on behalf of the LHCb collaboration

*Physikalisches Institut Heidelberg

July 17-21, 2023, Charm

Rare (semi)leptonic charm decays

Semileptonic transitions (FCNC)

down-type	up-type
$b \rightarrow s l^+ l^-$	$t \rightarrow c l^+ l^-$
$b \rightarrow dl^+ l^-$	$t \rightarrow u l^+ l^-$
$s \rightarrow dl^+ l^-$	$c \rightarrow u l^+ l^-$

• Rare decays: Branching ratios $\leq O(10^{-6})$ and decays able to test Flavour Changing Neutral Currents (FCNC)

Rare (semi)leptonic charm decays

- Rare decays: Branching ratios $\leq O(10^{-6})$ and decays able to test Flavour Changing Neutral Currents (FCNC)
- Charm decays provide a unique probe, only bound system to study up-typ FCNC
- Some New Physics (NP) models predict enhancements in decay rates, CP asymmetries or angular observables

Semileptonic transitions (FCNC)

down-type	up-type
$b \rightarrow s l^+ l^-$	$t \rightarrow c l^+ l^-$
$b \rightarrow dl^+ l^-$	$t \rightarrow u l^+ l^-$
$s \rightarrow dl^+ l^-$	$c \rightarrow u l^+ l^-$

Landscape of rare and forbidden charm decays

$$D^{0} \rightarrow \mu^{+}e^{-}$$
$$D^{0} \rightarrow pe^{-}$$
$$D^{+}_{(s)} \rightarrow h^{+}\mu^{+}e^{-}$$

LFV, LNV,	BNV			FC	NC				VMD	J	Radia	tive
0	10 ⁻¹⁵	10 ⁻¹⁴	10 ⁻¹³	10 ⁻¹²	10 ⁻¹¹	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴
$D^+_{(s)} \to h^- l^+ l^+$ $D^0 \to X^0 \mu^+ e^-$ $D^0 \to X^{} l^+ l^+$			D ⁰	$D^0 \rightarrow ee$	$\rightarrow \mu\mu$	$D^{0} \to \pi^{0}$ $D^{0} \to \rho^{0}$ $D^{0} \to K^{0}$ $D^{0} \to \phi^{0}$	$\pi^{+}l^{+}l^{-}$ $l^{+}l^{-}$ $K^{-}l^{+}l^{-}$ $l^{+}l^{-}$	$D^{0} \rightarrow$ $D^{0} \rightarrow$ $D^{0} \rightarrow$	$K^{+}\pi^{-}V(-)$ $\overline{K}^{*0}V(-)$ $\gamma\gamma$	→ II) D II) D D	$^{+} \rightarrow \pi^{+} \phi$ $^{0} \rightarrow K^{-} \pi$ $^{0} \rightarrow K^{*0} V$	$(\rightarrow ll)$ $T^+V(\rightarrow ll)$ $V(\rightarrow ll)$

$D^+_{(s)} \rightarrow \pi^+ l^+ l^-$	$D^0 \rightarrow \pi^- \pi^+ V(\rightarrow ll)$	$D^0 \to K^{*0}$
$D^+_{,} \rightarrow K^+ l^+ l^-$	$D^0 \to \rho \ V(\to ll)$	$D^0 \rightarrow (\phi, \rho, \phi)$
$D^0 \rightarrow K^- \pi^+ l^+ l^-$	$D^0 \to K^+ K^- V(\to ll)$	D^+ (φ, ρ, ω)
$D^0 \rightarrow K^{*0}l^+l^-$	$D^0 \rightarrow \phi V(\rightarrow ll)$	$D_{s}^{+} \rightarrow \pi^{+} \phi(\rightarrow ll)$
	, , ,	

γ

• Test new amplitudes

Test new phases

• Test Lorentz structure

• Test new amplitudes

$$\mathscr{A} = \mathscr{A}_0 \left(\frac{c_{SM}}{m_W^2} + \frac{c_{NP}}{\Lambda_{NP}^2} \right)$$

• Test new phases

 $\sim |\mathscr{A}_{SM}| |\mathscr{A}_{NP}| \sin \Delta \phi_{NP}$

• Test Lorentz structure

$$\sim \bar{\Psi} \Gamma_{NP} \Psi$$

• Test new amplitudes

extremely suppressed due \Rightarrow below experimental sensitivity $\mathscr{B} < \mathcal{O}(10^{-10})$ to GIM

• Test new phases

$$\mathrm{Im}(\frac{\mathrm{V_{cb}^{*}V_{ub}}}{\mathrm{V_{cd}^{*}V_{ud}}}) \sim 10^{-3} \Rightarrow \mathrm{A_{CP}} \sim 0$$

• Test Lorentz structure

no lepton axial vector coupling due to GIM suppression parity conservation

• Test new amplitudes

$$\mathscr{A} = \mathscr{A}_0 \left(\frac{c_{SM}}{m_W^2} + \frac{c_{NP}}{\Lambda_{NP}^2} \right) \Rightarrow \begin{array}{l} \text{Enhancements possible} \\ \text{up to } \mathcal{O}(10^{-7}) \end{array}$$

• Test new phases

~ $|\mathscr{A}_{SM}| |\mathscr{A}_{NP}| \sin \Delta \phi_{NP} \Rightarrow CPV$ effects up to a few %

• Test Lorentz structure

 $\sim \overline{\Psi}\Gamma_{NP}\Psi \Rightarrow$ modified or enhanced

New Physics contributions examples:

dynamics competing with loop-diagrams.

Example Short Distance (SD) contribution: Phys. Rev. Lett. **119**, 181805 (2017)

- Precise theoretical predictions are difficult for the branching fractions ($m_c \sim \Lambda_{QCD}$) resulting in predictions with high uncertainty.
- Task is to find ways to look for NP despite LD dominance:

- Searches in certain regions of the phase space

- Null tests based on (approximate) symmetries

• Rare Charm decays are often dominated by Long Distance interactions (mesonic vector resonances) with tree-level

Example Long Distance (LD) contribution: Phys. Rev. Lett. **119**, 181805 (2017)

- LHCb is a forward spectrometer at the LHC, optimised to study b- and c-hadrons
- Excellent vertex resolution, momentum resolution $\sigma_p/p \sim 0.5 \%$
- Particle identification with calorimeter, muon stations and Cherenkov detectors (RICH), particle misidentification rate $\sim 1 \%$

- Worlds largest sample of charm decays: More than $10 \times 10^{12} c\overline{c}$ pairs produced within the LHCb acceptance between 2015 and 2018
 - The charm cross section is ~20 times larger than the b cross section [JHEP03(2016)159]

In general:

• Small transverse momentum \rightarrow hard to trigger on (difficult but LHCb is build for this)

In general:

• Small transverse momentum \rightarrow hard to trigger on (difficult but LHCb is build for this)

Muons:

• Dedicated muon chambers allow for excellent muon identification and reconstruction in addition to the tracking stations

In general:

• Small transverse momentum \rightarrow hard to trigger on (difficult but LHCb is build for this)

Muons:

 Dedicated muon chambers allow for excellent muon identification and reconstruction in addition to the tracking stations

Electrons:

• The electron emits bremsstrahlung before magnet \rightarrow limited efficiency on bremsstrahlung recovery

Story of rare (semi)leptonic charm decays at LHCb* *omitting superseded measurements

- 2015: First observation of the decay $D^0 \to K^- \pi^+ \mu^+ \mu^-$ in the $\rho^0 \omega$ region of the dimuon mass spectrum Phys. Lett. B 757 (2016) 558
- 2015: Search for the lepton-flavour violating decay $D^0 \rightarrow e^{\pm} \mu^{\mp}$ Phys. Lett. B 754 (2016) 167
- 2017: Rarest observed charm meson decays $D^0 \rightarrow KK\mu\mu$ and $D^0 \rightarrow \pi\pi\mu\mu$ with branching fraction ~10⁻⁷ Phys. Rev. Lett. **119**, 181805 (2017)
- 2018: Search for the rare decay $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$
- 2021: Searches for 25 rare and forbidden decays of D^+ and D_s^+ mesons JHEP 06 (2021) 044
- 2021: Angular analysis of $D^0 \to \pi \pi \mu \mu$ and $D^0 \to K K \mu \mu$ decays and search for CP violation

Phys. Rev. Lett. 128, 221801 (2022)

- 2022: Search for rare decays of D^0 mesons into two muons arXiv:2212.11203v1 [hep-ex] 21 Dec 2022
- 2023: Search for $D^*(2007)^0 \to \mu^+\mu^-$ in $B^- \to \pi^-\mu^+\mu^-$ decays arXiv:2304.01981v2 [hep-ex] 5 Apr 2023

Story of rare (semi)leptonic charm decays at LHCb* *omitting superseded measurements

- 2015: First observation of the decay $D^0 \to K^- \pi^+ \mu^+ \mu^-$ in the $\rho^0 \omega$ region of the dimuon mass spectrum Phys. Lett. B 757 (2016) 558
- 2015: Search for the lepton-flavour violating decay $D^0 \rightarrow e^{\pm} \mu^{\mp}$ Phys. Lett. B 754 (2016) 167
- 2017: Rarest observed charm meson decays $D^0 \to KK\mu\mu$ and $D^0 \to \pi\pi\mu\mu$ with branching fraction ~10⁻⁷ Phys. Rev. Lett. **119**, 181805 (2017)
- 2018: Search for the rare decay $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$
- 2021: Searches for 25 rare and forbidden decays of D^+ and D_s^+ mesons JHEP 06 (2021) 044
- 2021: Angular analysis of $D^0 \to \pi \pi \mu \mu$ and $D^0 \to K K \mu \mu$ decays and search for CP violation Phys. Rev. Lett. 128, 221801 (2022)
- 2022: Search for rare decays of D^0 mesons into two muons arXiv:2212.11203v1 [hep-ex] 21 Dec 2022
- 2023: Search for $D^*(2007)^0 \to \mu^+\mu^-$ in $B^- \to \pi^-\mu^+\mu^-$ decays arXiv:2304.01981v2 [hep-ex] 5 Apr 2023

Story of rare (semi)leptonic charm decays at LHCb* *omitting superseded measurements

- 2015: First observation of the decay $D^0 \to K^- \pi^+ \mu^+ \mu^-$ in the $\rho^0 \omega$ region of the dimuon mass spectrum Phys. Lett. B 757 (2016) 558
- 2015: Search for the lepton-flavour violating decay $D^0 \rightarrow e^{\pm} \mu^{\mp}$ Phys. Lett. B 754 (2016) 167
- 2017: Rarest observed charm meson decays $D^0 \to KK\mu\mu$ and $D^0 \to \pi\pi\mu\mu$ with branching fraction ~10⁻⁷ Phys. Rev. Lett. **119**, 181805 (2017)
- 2018: Search for the rare decay $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$
- 2021: Searches for 25 rare and forbidden decays of D^+ and D_s^+ mesons JHEP 06 (2021) 044
- 2021: Angular analysis of $D^0 \to \pi \pi \mu \mu$ and $D^0 \to K K \mu \mu$ decays and search for CP violation Phys. Rev. Lett. 128, 221801 (2022)
- 2022: Search for rare decays of D^0 mesons into two muons arXiv:2212.11203v1 [hep-ex] 21 Dec 2022
- 2023: Search for $D^*(2007)^0 \to \mu^+\mu^-$ in $B^- \to \pi^-\mu^+\mu^-$ decays arXiv:2304.01981v2 [hep-ex] 5 Apr 2023

Latest Measurements

Long distance contribution:

- Expected to be dominated by intermediate two γ state Phys. Rev. D 66, 014009 (2002)
- Expected branching ratio $\mathcal{O}(10^{-13})$ Phys. Rev. D 66, 014009 (2002)
- Branching ratio contribution of intermediate two γ state below $\mathcal{O}(10^{-11})$ due to experimental limit on $D^0 \rightarrow \gamma \gamma$ by Belle Phys. Rev. D93 (2016) 051102

Short distance contribution:

- Expected branching ratio $\mathcal{O}(10^{-18})$ Phys. Rev. D 66, 014009 (2002)
- Strong chirality suppression
- Rate could be enhanced by NP!

 \rightarrow null test!

Phys. Rev. D 66, 014009 (2002)

• Goal is to set a limit on or measure the branching ratio:

$$\mathscr{B}(D^0 \to \mu^+ \mu^-) = \frac{N(D^0 \to \mu^+ \mu^-)}{\sigma(pp \to D^0) \, \mathscr{L}^{int}} \times$$

• Difficult to measure absolute rates at LHCb due to large uncertainties on cross section and luminosity

$$\frac{1}{\epsilon(D^0\to\mu^+\mu^-)}$$

Determined by fit to the invariant D^0 mass and $\Delta m(\mu\mu)$

$$\mathscr{B}(D^{0} \to \mu^{+}\mu^{-}) = \frac{N(D^{0} \to \mu^{+}\mu^{-})}{N(D^{0} \to h^{(\prime)-}h^{+})} \times \frac{\epsilon(D^{0} \to h^{(\prime)-}h^{+})}{\epsilon(D^{0} \to \mu^{+}\mu^{-})} \times \mathscr{B}(D^{0} \to h^{(\prime)-}h^{+})$$

From simulations, corrected and cross checked by data driven methods

• The relative branching fraction is normalised to $D^0 \to K^- \pi^+$ and $D^0 \to \pi^- \pi^+$ donated as $D^0 \to h^{(\prime)-} h^+$

External input: $\mathscr{B}(D^0 \to K^- \pi^+) \sim (10^{-2})$ $\mathscr{B}(D^0 \to \pi^- \pi^+) \sim (10^{-3})$

- Topological and kinematic properties are used to reconstruct possible candidates
- D^0 produced in D^{*+} decays are used, to suppress background:

$$\Delta m = m(\mu^{+}\mu^{-}\pi^{+}) - m(\mu^{+}\mu^{-})$$

Search for the decay $D^0 \rightarrow \mu^+ \mu^-$

• Fit to $m(\mu\mu)$ and Δm

 $\Delta m = m(\mu^{+}\mu^{-}\pi^{+}) - m(\mu^{+}\mu^{-})$

- Number of misidentified, $\pi \to \mu, D^0 \to \pi^+\pi^-$ decays constraint by MC studies
- Validated and crosschecked with data driven methods
- No significant signal is observed

Search for the decay $D^0 \rightarrow \mu^+ \mu^-$

Signal mode

Most stringent limit on leptonic charm decays

 $\mathscr{B}(D^0 \to \mu^+ \mu^-) \le 3.1 \times 10^{-9} \ (90 \% CL)$

arXiv:2212.11203v1 [hep-ex] 21 Dec 2022

Search for the decay $D^*(2007)^0 \rightarrow \mu^+\mu^-$ in $B^- \rightarrow \pi^-\mu^+\mu^-$ decays

р

arXiv:2304.01981v2 [hep-ex] 5 Apr 2023

Used dataset:

- Run 1 (2011-2012) and Run 2 (2015 - 2018)
- Center of mass energy: 7, 8 and 13 TeV
- Luminosity: 9.0 fb^{-1}

Using $D^*(2007)^0$ arising from B^- for better background separation

Search for the decay $D^*(2007)^0 \rightarrow \mu^+\mu^-$ in $B^- \rightarrow \pi^-\mu^+\mu^-$ decays

arXiv:2304.01981v2 [hep-ex] 5 Apr 2023

- Never been measured before
- Contrary to $D^0 \rightarrow \mu^+ \mu^-$ (pseudo-scalar) the excited vector state $D^*(2007)^0$ decaying to two muons has no chirality suppression
- Assuming Lepton Universality, decays with muon and electrons should have same branching ratio* *apart from phase space arguments
- SM prediction for the branching ratio $\mathscr{B}(D^*(2007)^0 \rightarrow e^+e^-) \sim \mathscr{O}(10^{-18})$ JHEP 11 (2015) 142
- CMD-3:

 $\mathscr{B}(D^*(2007)^0 \to e^+e^-) \le 1.7 \times 10^{-6} \ (90 \% CL)$ Phys. Atom. Nucl. 83 (2020) 954

Search for the decay $D^*(2007)^{U}$

arXiv:2304.01981v2 [hep-ex] 5 Apr 2023

- Normalised to $B^- \to J/\psi (\to \mu^+ \mu^-) \pi^-$
- Additional branching fraction information needed to calculate $\mathscr{B}(D^{*0} \to \mu^+ \mu^-)$

$$\mathscr{B}(D^{*0} \to \mu^+ \mu^-) = \frac{N(B^- \to D^{*0}(\to \mu^+ \mu^-)\pi^-)}{N(B^- \to J/\psi(\to \mu^+ \mu^-)K^-)} \times \frac{\varepsilon(B^- \to J/\psi(\to \mu^+ \mu^-)K^-)}{\varepsilon(B^- \to D^{*0}(\to \mu^+ \mu^-)\pi^-)} \times \frac{\mathscr{B}(B^- \to J/\psi K^-)}{\mathscr{B}(B^- \to D^{*0}\pi^-)} \times \frac{\mathscr{B}(J/\psi \to \mu^- \mu^+)}{\mathscr{B}(J/\psi \to \mu^- \mu^+)}$$

Determined by fit to the invariant D^{*0} and $B^$ mass

From simulations, corrected and cross checked by data driven methods

$$^{0} \rightarrow \mu^{+}\mu^{-}$$
 in $B^{-} \rightarrow \pi^{-}\mu^{+}\mu^{-}$ decays

External input: $\mathscr{B}(J/\psi \to \mu^- \mu^+) \sim (10^{-2})$ $\mathscr{B}(B^- \to J/\psi K^-) \sim (10^{-3})$ $\mathscr{B}(B^- \to D^{*0}\pi^-) \sim (10^{-3})$

Exp. Phys. 2022 (2022) 083C01

Search for the decay $D^*(2007)^6$

arXiv:2304.01981v2 [hep-ex] 5 Apr 2023

- Two dimensional fit to $m(\mu\mu)$ and $m(\pi\mu\mu)$
- Background due to a wrongly identified kaon and no dimuon spectrum

$$^{0} \rightarrow \mu^{+}\mu^{-}$$
 in $B^{-} \rightarrow \pi^{-}\mu^{+}\mu^{-}$ decays

Background due to a wrongly identified kaon and non resonant $B^- \to \pi^- \mu^+ \mu^-$ is flat within the fit range in the

29

Search for the decay $D^*(2007)^0 \rightarrow \mu^+\mu^-$ in $B^- \rightarrow \pi^-\mu^+\mu^-$ decays

arXiv:2304.01981v2 [hep-ex] 5 Apr 2023

• First limit for $D^*(2007)^0 \rightarrow \mu^+\mu^-$:

```
\mathscr{B}(D^*(2007)^0 \to \mu^+\mu^-) \le 2.6 \times 10^{-8} \ (90 \% \ CL)
```

• Assuming LFU, increases constraints on $D^*(2007)^{\overline{0}} \rightarrow e^+e^-$ set by CMD-3 by two orders of magnitude

$\times 10^{-7}$

Searches for rare decays of charged D^+ and D_c^+ mesons JHEP 06 (2021) 044

Used dataset:

- Run 2 (only 2016)
- Center of mass energy: 13 TeV
- Luminosity: 1.6 fb^{-1}

Study of 25 rare and forbidden decays

 \rightarrow forbidden decays provide perfect null test

 $D^+ \rightarrow \pi^- \mu^+ e^+$ $D^+ \rightarrow \pi^+ e^+ \mu^-$

 $D^+ \rightarrow \pi^+ \mu^+ e^ D^+ \rightarrow K^+ \mu^+ \mu^ D_s^+ \rightarrow \pi^- \mu^+ \mu^+$ $D^+ \rightarrow K^+ \mu^+ e^ D^+ \rightarrow K^+ e^+ \mu^-$

 $D_{\rm c}^+ \rightarrow \pi^+ \mu^+ e^ D_{\rm s}^+ \rightarrow \pi^- \mu^+ e^+$

 $\begin{array}{cccc} D^+ \to \pi^+ \mu^+ \mu^- & D^+ \to \pi^+ e^+ e^- & D^+ \to K^+ e^+ e^- & D_s^+ \to \pi^+ e^+ \mu^- & D_s^+ \to K^+ \mu^+ e^- \\ D^+ \to \pi^- \mu^+ \mu^+ & D^+ \to \pi^- e^+ e^+ & D_s^+ \to \pi^+ \mu^+ \mu^- & D_s^+ \to \pi^+ e^+ e^- & D_s^+ \to K^- \mu^+ e^+ \end{array}$ $D_{\rm s}^+ \to \pi^- e^+ e^+ \qquad D_{\rm s}^+ \to K^+ e^+ \mu^ D_s^+ \rightarrow K^+ \mu^+ \mu^ D_s^+ \rightarrow K^+ e^+ e^ D_{\rm s}^+ \rightarrow K^- \mu^+ \mu^+$ $D_s^+ \rightarrow K^- e^+ e^+$

Searches for rare decays of charged D^+ and D_s^+ mesons

JHEP 06 (2021) 044

- For SM allowed decays, resonant area, $q = m(ll) \in [525 \text{ MeV}, 1250 \text{ MeV}]$, containing $D_{(s)}^+ \rightarrow V(\rightarrow l^+l^-)\pi^+$ with $V = \eta, \rho^0/\omega, \phi$ and $l = \mu, e$, vetoed
- Normalised to ϕ resonance $D_{(s)}^+ \rightarrow \phi(\rightarrow \mu^+ \mu^-)\pi^+$ and $D_{(s)}^+ \rightarrow \phi(\rightarrow e^+ e^-)\pi^+$ for decays with muons and electrons, respectively

Searches for rare decays of charged D^+ and D_c^+ mesons JHEP 06 (2021) 044

- Normalisation yield estimated by fit to $m(\pi^+\mu^-\mu^+)$ and $m(\pi^+e^-e^+)$
- A bremsstrahlung reconstruction procedure is used to correct the momentum for the electron candidates

Searches for rare decays of charged D^+ and D_s^+ mesons JHEP 06 (2021) 044

- Fit to three body invariant mass
- PID selection to suppress mis-identified background due to hadronic decays
- BDT selection to suppress combinatorial background
- Branching fractions are normalised to $D^+_{(s)} \to \phi(\to \mu^+\mu^-)\pi^+$

Searches for rare decays of charged D^+ and D_s^+ mesons JHEP 06 (2021) 044

- Fit to three body invariant mass
- PID selection to suppress mis-identified background due to hadronic decays
- BDT selection to suppress combinatorial background
- Branching fractions are normalised to $D_{(s)}^+ \rightarrow \phi(\rightarrow e^+e^-)\pi^+$

Searches for rare decays of charged D^+ and D^+_{c} mesons JHEP 06 (2021) 044

- Provides competitive results, improves old limits up to two orders of magnitude
- Background only hypothesis is consistent with the results

Searches for rare decays of charged D^+ and D^+_c mesons JHEP 06 (2021) 044

- Provides competitive results, improves old limits up to two orders of magnitude
- Background only hypothesis is consistent with the results

Searches for rare decays of charged D^+ and D^+_{c} mesons JHEP 06 (2021) 044

- Provides competitive results, improves old limits up to two orders of magnitude
- Background only hypothesis is consistent with the results

Study of $D^0 \rightarrow KK\mu\mu$ and $D^0 \rightarrow \pi\pi\mu\mu$

First observation:

Phys. Rev. Lett. 119, 181805 (2017)

- Run 1 (only 2012)
- Center of mass energy: 8 TeV
- Luminosity: 2.0 fb^{-1}

Angular analysis: Phys. Rev. Lett. **128**, 221801 (2022)

- Run 1 (2011-2012) and Run 2 (2015-2018)
- Center of mass energy: 7, 8 and 13 TeV
- Luminosity: 9.0 fb^{-1}

Phys. Rev. Lett. 119, 181805 (2017)

Analysis strategy:

- D^0 produced in D^{*+} decays are used, to suppress background
- PID selection to suppress mis-identified background due to hadronic decays
- BDT selection to suppress combinatorial background

Measured dimuon-mass integrated branching ratio:

$$\mathscr{B}(D^0 \to K^+ K^- \mu^+ \mu^-) = (1.54 \pm 0.27 \pm 0.18) \times 10^{-7}$$

 $\mathscr{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) = (9.64 \pm 0.48 \pm 1.10) \times 10^{-7}$

First observation of $D^0 \rightarrow KK\mu\mu$ and $D^0 \rightarrow \pi\pi\mu\mu$ Phys. Rev. Lett. **119**, 181805 (2017)

LD contribution example:

First observation of $D^0 \rightarrow KK\mu\mu$ and $D^0 \rightarrow \pi\pi\mu\mu$ Phys. Rev. Lett. **119**, 181805 (2017)

Phys. Rev. D 98, 035041 (2018)

- Split into kinematic bins to search for NP away from decays with intermediate resonances

Split into kinematic bins to search for NP away from decays with intermediate resonances

Search for CP Violation and Angular Analysis of $D^0 \to \pi^+ \pi^- \mu^+ \mu^-$ and $D^0 \to K^+ K^- \mu^+ \mu^-$

Phys. Rev. Lett. 128, 221801 (2022)

First observation: Phys. Rev. Lett. 119, 181805 (2017)

- $N(D^0 \to K^+ K^- \mu^+ \mu^-) \sim 35$
- $N(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) \sim 550$

Angular analysis (full dataset): Phys. Rev. Lett. **128**, 221801 (2022)

- $N(D^0 \to K^+ K^- \mu^+ \mu^-) \sim 300$
- $N(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) \sim 3500$

Enough statistics to perform full angular analysis and search for CPV!

Search for CP Violation and Angular Analysis of $D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ and $D^0 \rightarrow K^+ K^- \mu^+ \mu^-$

Observed decays allow to study ullet $\delta_{\phi} = \pi$ asymmetries: $\delta_{\phi} = 0$ $\delta_{\phi} = \pi/2$ $A_{CP} \equiv \frac{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) - \Gamma(\bar{D}^0 \to h^+ h^- \mu^+ \mu^-)}{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) + \Gamma(\bar{D}^0 \to h^+ h^- \mu^+ \mu^-)}$ $\delta_{\phi} = -\pi/2$ A_{CP} A_{CP} LHCb 0.4⊢ $9 \, {\rm fb}^{-1}$ 0.2 0.2 -0.2 -0.2 -0.4 -0.4 $D^0 \!\!
ightarrow \pi^+ \pi^- \! \mu^+ \mu^ D^0 \rightarrow K^+ K^- \mu^+ \mu^-$ -0.6 -0.6 500 1500 400 1000 600 1.08 $m(\mu^{+}\mu^{-})$ [MeV/ c^{2}] $m(\mu^{+}\mu^{-})$ [MeV/ c^{2}]

Search for CP Violation and Angular Analysis of $D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ and $D^0 \rightarrow K^+ K^- \mu^+ \mu^-$

Phys. Rev. Lett. 128, 221801 (2022)

 $d\Gamma$ $= I_1 +$ $\overline{d}\cos(\theta_{\mu}) \ d\cos(\theta_{h}) \ d\phi$ $I_2 \cdot \cos(2\theta_\mu) +$ $I_3 \cdot \sin^2(2\theta_\mu) \cos(2\phi) +$ $I_4 \cdot \sin(2\theta_{\mu}) \cos(\phi) +$ $I_5 \cdot \sin(\theta_{\mu}) \cos(\phi) +$ $I_6 \cdot \cos(\theta_{\mu}) +$ $I_7 \cdot \sin(\theta_{\mu}) \sin(\phi) +$ $I_8 \cdot \sin(2\theta_\mu) \sin(\phi) +$ $I_9 \cdot \sin^2(2\theta_\mu) \sin(2\phi) +$

Search for CP Violation and Angular Analysis of $D^0 \to \pi^+ \pi^- \mu^+ \mu^-$ and $D^0 \to K^+ K^- \mu^+ \mu^-$

Phys. Rev. Lett. 128, 221801 (2022)

$$\frac{d\Gamma}{d\cos(\theta_{\mu}) \ d\cos(\theta_{h}) \ d\phi} = I_{1} + I_{2} \cdot \cos(2\theta_{\mu}) + I_{3} \cdot \sin^{2}(2\theta_{\mu}) \cos(2\phi) + I_{4} \cdot \sin(2\theta_{\mu}) \cos(\phi) + I_{5} \cdot \sin(\theta_{\mu}) \cos(\phi) + I_{5} \cdot \sin(\theta_{\mu}) \cos(\phi) + I_{6} \cdot \cos(\theta_{\mu}) + I_{7} \cdot \sin(\theta_{\mu}) \sin(\phi) + I_{8} \cdot \sin(2\theta_{\mu}) \sin(\phi) + I_{8} \cdot \sin(2\theta_{\mu}) \sin(\phi) + I_{9} \cdot \sin^{2}(2\theta_{\mu}) \sin(2\phi) + I_{9} \cdot \sin^{2}(2\theta_{\mu}) \sin(2\phi) + I_{9} \cdot \sin^{2}(2\theta_{\mu}) \sin(2\phi) + I_{1} \cdot \sin^{2}(2\theta_{\mu}) \sin^{2}(2\phi_{\mu}) \sin^{2}(2\phi_{\mu}) + I_{1} \cdot \sin^{2}(2\theta_{\mu}) \sin^{2}(2\phi_{\mu}) \sin^{2}(2\phi_{\mu}) + I_{1} \cdot \sin^{2}(2\theta_{\mu}) \sin^{2}(2\phi_{\mu}) \sin^{2}(2\phi_{\mu}) + I_{1} \cdot \sin^{2}(2\theta_{\mu}) \sin^{2}(2\phi_{\mu}) + I_{1} \cdot \sin^{2$$

- No axial-vector couplings in rare charm decays, due to GIM suppression
- Clean null-test in $I_{5,6,7}$

Search for CP Violation and Angular Analysis of $D^0 \to \pi^+ \pi^- \mu^+ \mu^-$ and $D^0 \to K^+ K^- \mu^+ \mu^-$

Phys. Rev. Lett. 128, 221801 (2022)

$$\frac{d\Gamma}{d\cos(\theta_{\mu}) \ d\cos(\theta_{h}) \ d\phi} = I_{1} + I_{2} \cdot \cos(2\theta_{\mu}) + I_{3} \cdot \sin^{2}(2\theta_{\mu}) \cos(2\phi) + I_{4} \cdot \sin(2\theta_{\mu}) \cos(\phi) + I_{5} \cdot \sin(\theta_{\mu}) \cos(\phi) + I_{5} \cdot \sin(\theta_{\mu}) \cos(\phi) + I_{6} \cdot \cos(\theta_{\mu}) + I_{7} \cdot \sin(\theta_{\mu}) \sin(\phi) + I_{8} \cdot \sin(2\theta_{\mu}) \sin(\phi) + I_{9} \cdot \sin^{2}(2\theta_{\mu}) \sin(2\phi) + I_{9} \cdot \sin^{2}(2\theta_{\mu}) \sin^{2}(2$$

Search for CP Violation and Angular Analysis of $D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ and $D^0 \rightarrow K^+ K^- \mu^+ \mu^-$

Phys. Rev. Lett. 128, 221801 (2022)

- Parity is conserved due to absence of axial-vector currents
- *CP* asymmetries:

 $\langle A_{
m i}
angle = rac{1}{2} \left[\langle I_{
m i}
angle - (+) \langle \overline{I_{
m i}}
angle
ight]$

for CP-even (CP-odd) coefficients are expected to be 0

- All asymmetries consistent with zero
- No dependency on dimuon mass

CP-even: *I*_{2,3,4,7} CP-odd: *I*_{5,6,8,9}

Search for CP Violation and Angular Analysis of $D^0 \to \pi^+ \pi^- \mu^+ \mu^-$ and $D^0 \to K^+ K^- \mu^+ \mu^-$

Phys. Rev. Lett. 128, 221801 (2022)

• CP averages: $\langle S_{\rm i} \rangle = \frac{1}{2} \left[\langle I_{\rm i} \rangle + (-) \langle \overline{I_{\rm i}} \rangle \right]$

for CP-even (CP-odd) coefficients

- $< S_{5.6.7} >$ compatible with zero
- No dimuon mass dependence observed
- Measured null-test observables in agreement with the SM null hypothesis
- p values of 79% (0.8%) for $D^0 \to \pi^+ \pi^- \mu^+ \mu^- (D^0 \to K^+ K^- \mu^+ \mu^-)$

CP-even: *I*_{2,3,4,7} CP-odd: *I*_{5,6,8,9}

- Statistical precision of angular analysis ~2%
- Branching ratios precision up to $\mathcal{O}(10^{-9})$
 - Full Run 2 dataset: $\mathscr{B}(D^0 \to \mu^+ \mu^-) \le 3.1 \times 10^{-9} \ (90 \% CL)$ $\mathscr{B}(D^*(2007)^0 \to \mu^+ \mu^-) \le 2.6 \times 10^{-8} \ (90 \% CL)$
 - Partial Run 2 dataset:

 $\mathcal{B}(D^+ \to \pi^+ \mu^+ \mu^-) \le 6.7 \times 10^{-8} \ (90 \ \% \ CL)$ $\mathcal{B}(D^+ \to K^+ \mu^+ \mu^-) \le 5.4 \times 10^{-8} \ (90 \ \% \ CL)$

 $\mathscr{B}(D_s^+ \to \pi^+ \mu^+ \mu^-) \le 18 \times 10^{-8} \ (90 \ \% \ CL)$ $\mathscr{B}(D_s^+ \to K^+ \mu^+ \mu^-) \le 14 \times 10^{-8} \ (90 \ \% \ CL)$

$$\begin{aligned} \mathscr{B}(D^+ \to \pi^+ e^+ e^-) &\leq 160 \times 10^{-8} \ (90 \ \% \ CL) \\ \mathscr{B}(D^+ \to K^+ e^+ e^-) &\leq 85 \times 10^{-8} \ (90 \ \% \ CL) \\ \mathscr{B}(D_s^+ \to \pi^+ e^+ e^-) &\leq 550 \times 10^{-8} \ (90 \ \% \ CL) \\ \mathscr{B}(D_s^+ \to K^+ e^+ e^-) &\leq 490 \times 10^{-8} \ (90 \ \% \ CL) \end{aligned}$$

+17 more

 $\mathscr{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) = (9.64 \pm 0.48 \pm 1.10) \times 10^{-7}$ $\mathscr{B}(D^0 \to K^+ K^- \mu^+ \mu^-) = (1.54 \pm 0.27 \pm 0.18) \times 10^{-7}$

The not so far future

Things to do

- $D^+ \rightarrow h^+ l^- l^+$ fully exploit the Run 2 dataset with updates of existing measurement and new analyses
- $D^0 \rightarrow h^+ h^- l^+ l^-$ possibility to intensify efforts with dielectron final state

$$\mathcal{B}(D^{0} \to K^{-}\pi^{+}\mu^{-}\mu^{+}) = (4.17 \pm 0.12 \pm 0.40) \times 10^{-6}$$
Phys. Lett. B757 (2016) 558
$$\mathcal{B}(D^{0} \to K^{+}K^{-}\mu^{+}\mu^{-}) = (1.54 \pm 0.27 \pm 0.18) \times 10^{-7}$$

$$\mathcal{B}(D^{0} \to \pi^{+}\pi^{-}\mu^{+}\mu^{-}) = (9.64 \pm 0.48 \pm 1.10) \times 10^{-7}$$
Phys. Rev. Lett. **119**, 181805 (2017)

$$\begin{aligned} \mathscr{B}(D^{0} \to K^{-}\pi^{+}e^{-}e^{+}) &= (4.0 \pm 0.5 \pm 0.2 \pm 0.1) \times 10^{-6} \\ \mathscr{B}(D^{0} \to K^{+}K^{-}e^{+}e^{-}) &= ? \\ \mathscr{B}(D^{0} \to \pi^{+}\pi^{-}e^{+}e^{-}) &= ? \end{aligned}$$

Lepton Flavour Universality

• Charm can provide a complementary test of LFU:

$$R_{hh}^{c} = \frac{\int_{q_{min}^{2}}^{q_{max}^{2}} \frac{d\mathscr{B}(D^{0} \to h^{+}h^{-}\mu^{+}\mu^{-})}{dq^{2}} dq^{2}}{\int_{q_{min}^{2}}^{q_{max}^{2}} \frac{d\mathscr{B}(D^{0} \to h^{+}h^{-}e^{+}e^{-})}{dq^{2}} dq^{2}}$$

 Any observation of LFU violation, apart from phase space effects, would immediately hint to new physics

The Future

- LHCb is an all-purpose spectrometer placed at the LHC optimised to study band c-hadrons
- Completely new Tracker and Vertex Locator for a better vertex resolution, tracking resolution
- Particle identification with calorimeter, muon stations and Cherenkov detectors (RICH)
- Capable of a higher read out rate, up to 40 MHz!

- LHCb is an all-purpose spectrometer placed at the LHC optimised to study band c-hadrons
- Completely new Tracker and Vertex Locator for a better vertex resolution, tracking resolution
- Particle identification with calorimeter, muon stations and Cherenkov detectors (RICH)
- Capable of a higher read out rate, up to 40 MHz!

- Goal is to collect about 50fb^{-1} of data until LS4, with an increased trigger efficiency for charm
- Potentially increasing this number by a factor of ~5 after LS4

Run 6

 $\sim 250 {\rm fb}^{-1}$

Last update: April 2023

			2	2	0	3	5	;				2036									2037										2038															
D	J	FΜ	Α	М	J	J	А	s	DI	NI	D	J	F	Μ	A	Μ	J	J	A	S	0	Ν	D	J	F	Μ	1 A	Μ	IJ	J	Α	S	0	NI	С.	וכ	٦	1 A	۱M	1 J	J	Α	S	0	Ν	D
																							R	u	n		5																			

Ions Commissioning with beam Hardware commissioning

Future Sensitivity LHCB-TDR-023

• Potential new limits on branching ratios* Upgrade 1, 2022-2030, and Upgrade 2, 2030+:

Mode	Run1-2 $(1-9 \text{ fb}^{-1})$	Upgrade1 (50fb^{-1})	Upgrade2 (300fb^{-1})
$D^0 \rightarrow \mu^+ \mu^-$	$6.2 \times 10^{-9} 3.1 \times 10^{-9}$	4.2×10^{-10}	1.3×10^{-10}
$D^+ \to \pi^+ \mu^+ \mu^-$	$6.7 imes 10^{-8}$	10^{-8}	3×10^{-9}
$D_s^+ \to K^+ \mu^+ \mu^-$	2.6×10^{-8}	10^{-8}	3×10^{-9}
$\Lambda_c^+ \to p \mu^+ \mu^-$	9.6×10^{-8}	1.1×10^{-8}	4.4×10^{-9}
$D^0 \to e^{\pm} \mu^{\mp}$	$1.3 imes 10^{-8}$	10^{-9}	4.1×10^{-9}

A.Contu - Towards ultimate precision in Flavour Physics, Durham (2-4 April 2019)

Statistical precision* on asymmetries:

Mode	Run1-2 $(1-9 \text{ fb}^{-1})$	Upgrade1 (50fb^{-1})	Upgrade2 (300fb^{-1})
$D^+ \to \pi^+ \mu^+ \mu^-$		0.2~%	0.08~%
$D^0 ightarrow \pi^+\pi^-\mu^+\mu^-$	3.8% 2%	1 %	0.4~%
$D^0 \rightarrow K^- \pi^+ \mu^+ \mu^-$		0.3~%	0.13~%
$D^0 \rightarrow K^+ \pi^- \mu^+ \mu^-$		$12 \ \%$	5 %
$D^0 \to K^+ K^- \mu^+ \mu^-$	11 % 6%	4 %	$1.7 \ \%$

A.Contu - Towards ultimate precision in Flavour Physics, Durham (2-4 April 2019)

*scaled by luminosity

Conclusion and prospects

- This presentation summarised the most recent results of rare (semi)leptonic charm decays at LHCb
- Reaching a precision on the branching ratios of $\mathcal{O}(10^{-9})$ and a statistical precision on angular observables of $\mathcal{O}(\%)$
- All measurements are **statistical limited**. New measurements, using complete Run 2 dataset, are on the way!
- Increased read out rate and improved trigger selection in Run 3

Conclusion and prospects

- This presentation summarised the most recent results of rare (semi)leptonic charm decays at LHCb
- Reaching a precision on the branching ratios of $\mathcal{O}(10^{-9})$ and a statistical precision on angular observables of $\mathcal{O}(\%)$
- All measurements are statisticar manual dataset, are on the way!
- Increased read out rate and improved trigger selection in Run 3

Backup

Angular Analysis of $D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ and $D^0 \rightarrow K^+ K^- \mu^+ \mu^-$

Phys. Rev. Lett. 128, 221801 (2022)

 Red marked observables are clean null tests

Phys. Rev. Lett. **119**, 181805 (2017)

Phys. Rev. Lett. 119, 181805 (2017)

 $m(\mu^+$ Low η ho^0/ω ϕ High

 $m(\mu^+$ Low

 η ρ^0/ω

First observation of $D^0 \rightarrow KK\mu\mu$ and $D^0 \rightarrow \pi\pi\mu\mu$

-	$D^0 \to \pi^+ \pi^-$	$\mu^+\mu^-$
μ^{-}) region	$[MeV/c^2]$	${\cal B} [10^{-8}]$
mass	< 525	$7.8 \pm 1.9 \pm 0.5 \pm 0.8$
	525 - 565	< 2.4(2.8)
	565 - 950	$40.6 \pm 3.3 \pm 2.1 \pm 4.1$
	950 - 1100	$45.4 \pm 2.9 \pm 2.5 \pm 4.5$
mass	> 1100	< 2.8(3.3)
I	$D^0 \to K^+ K^-$	$^{-}\mu^{+}\mu^{-}$
μ^{-}) region	$[MeV/c^2]$	${\cal B} [10^{-8}]$
mass	< 525	$2.6 \pm 1.2 \pm 0.2 \pm 0.3$
	525 - 565	< 0.7(0.8)
	> 565	$12.0 \pm 2.3 \pm 0.7 \pm 1.2$

