

Why do I care? The quest for new physics

Direct Searches

- Look directly for new particles produced

Why do I care? The quest for new physics

Direct Searches

- Look directly for new particles produced

Indirect Searches

- Look for the indirect influence of unknown particles on calculable quantities

Each approach is complementary to the other

Why do I care? The quest for new physics

Direct Searches

Indirect Searches

Each approach is complementary to the other

Why do I care? The quest for new physics

Marcella Bona

results from the Wilson coefficients

NMFV: $\mathrm{C}(\Lambda)=\alpha \times \mid \mathrm{F}_{\text {sw }} / / \Lambda^{2}$ $\mathrm{F}_{\mathrm{a}} \sim\left|\mathrm{F}_{\mathrm{sm}}\right|$, arbitrary phase $\alpha \sim 1$ for strongly coupled NP

Lower bounds on NP scale (at 95\% prob.)
$\alpha \sim \alpha_{w}$ in case of loop coupling through weak interactions

$$
\Lambda>2.9 \mathrm{TeV}
$$

The same slide from the last 2 presentations

- Traditionally, mixing governed by $2 x 2$ phenomenological Hamiltonian

$$
\mathbf{H}=\mathbf{M}-i \boldsymbol{\Gamma}
$$

- Diagonalized by $\left|D_{1,2}\right\rangle=p\left|D^{0}\right\rangle \pm q\left|\bar{D}^{0}\right\rangle$, where p, q are complex numbers, $|p|^{2}+|q|^{2}=1$
- Mixing defined by dimensionless parameters $x=\Delta m / \Gamma, y=\Delta \Gamma / 2 \Gamma$
- Indirect CPV encapsulated by $\left|\frac{q}{p}\right| \neq 1, \phi=\arg \left(\frac{q}{p}\right) \neq 0$
- Can access dispersive/absorptive parts directly with using $x_{12}, y_{12}, \phi_{12}$ and now ϕ_{f}^{M} and ϕ_{f}^{Γ} ($\underline{\text { PRD 103,053008(2021) })}$
- Depending on final state, can define observables which are sensitive to these underlying parameters

Measurement strategies

- At LHCb, reconstruct decays in two specific ways

Secondary

- In stark contrast to $e^{+} e^{-}$colliders
- Must account for cross-contamination between the two \rightarrow lean on IP and related quantities to separate

The Data Samples

- Three major data-taking periods:
- Run1 (2011-2012) - $\simeq 3 \mathrm{fb}^{-1}$
- Run2 (2015-2018) - $\simeq 6 \mathrm{fb}^{-1}$
- Run3 (Happening Now)

- Note, Run3 detector is brand new

The Data Samples

- Three major data-taking periods:

Charm hadrons already visible in Run3 data samples!

Commissioning is ongoing

LHCb-FIGURE-2023-011

See talk by G . Tuci

Baryon Lifetime Measurements

- To date, LHCb has upended conventional knowledge about charmed baryon lifetimes \rightarrow precision tests of HQET, etc
- $\tau_{S L}\left(\Xi_{c}^{+}\right)=456.8 \pm 3.5 \pm 2.9 \pm 3.1 \mathrm{fs}$
$\left.\begin{array}{rl}\tau_{\text {prompt }}\left(\Omega_{c}^{0}\right) & =276.5 \pm 13.4 \pm 4.4 \pm 0.7 \mathrm{fs} \\ \tau_{S L}\left(\Omega_{c}^{0}\right) & =268 \pm 24 \pm 10 \pm 2 \mathrm{fs}\end{array}\right\} \tau\left(\Omega_{c}^{0}\right)=274.5 \pm 12.4 \mathrm{fs}$
- $\tau_{\text {prompt }}\left(\Xi_{c c}^{++}\right)=256_{-22}^{+24} \pm 14 \mathrm{fs}$
- $\tau_{S L}\left(\Lambda_{c}^{+}\right)=203.5 \pm 1.0 \pm 1.3 \pm 1.4 \mathrm{fs}$ (Noting 2022 BelleII Measurement)

$$
\left.\begin{array}{rl}
\tau_{\text {prompt }}\left(\Xi_{c}^{0}\right) & =148.0 \pm 2.3 \pm 2.2 \pm 0.2 \mathrm{fs} \\
\tau_{S L}\left(\Xi_{c}^{0}\right) & =154.5 \pm 1.7 \pm 1.6 \pm 0.1 \mathrm{fs}
\end{array}\right\} \tau\left(\Xi_{c}^{0}\right)=152.0 \pm 2.0 \mathrm{fs}
$$

- Challenged previous measurements, and upended conventional understanding

SciB 67 (2022) 479 PRD100 (2019) 032001 PRL 121052002 (2018)

PDG

Baryon Lifetime Measurements

SciB 67 (2022) 479 PRD100 (2019) 032001 PRL 121052002 (2018)

- To date, LHCb has upended conventional knowledge about charmed baryon lifetimes \rightarrow precision tests of HQET, etc
- $\tau_{S L}\left(\Xi_{c}^{+}\right)=456.8 \pm 3.5 \pm 2.9 \pm 3.1 \mathrm{fs}$

Measured by LHCb
$\left.\begin{array}{rl}\tau_{\text {prompt }}\left(\Omega_{c}^{0}\right) & =276.5 \pm 13.4 \pm 4.4 \pm 0.7 \mathrm{fs} \\ \tau_{S L}\left(\Omega_{c}^{0}\right) & =268 \pm 24 \pm 10 \pm 2 \mathrm{fs}\end{array}\right\} \tau\left(\Omega_{c}^{0}\right)=274.5 \pm 12.4 \mathrm{fs}$
Decay Strongly
Decay Electromagnetically
Observed

- $\tau_{\text {prompt }}\left(\Xi_{c c}^{++}\right)=256_{-22}^{+24} \pm 14 \mathrm{fs}$

Not yet observed

- $\tau_{S L}\left(\Lambda_{c}^{+}\right)=203.5 \pm 1.0 \pm 1.3 \pm 1.4 \mathrm{fs}$ (Noting 2022 B

Opportunities!

Will require observation of missing states
$\left.\begin{array}{rl}\tau_{\text {prompt }}\left(\Xi_{c}^{0}\right) & =148.0 \pm 2.3 \pm 2.2 \pm 0.2 \mathrm{fs} \\ \tau_{S L}\left(\Xi_{c}^{0}\right) & =154.5 \pm 1.7 \pm 1.6 \pm 0.1 \mathrm{fs}\end{array}\right\} \tau\left(\Xi_{c}^{0}\right)=152.0 \pm 2.0 \mathrm{fs}$
first

- Challenged previous measurements, and upended conventional understanding

PDG

From Lifetimes to Time Dependent CPV

- Measurements of CP asymmetries require information on nuisance asymmetries

$$
A_{\text {raw }} \simeq A_{C P}+A_{\text {prod }}+A_{\text {det }}+A_{\text {trigger }}+\mathcal{O}\left(A^{3}\right)
$$

- Detection asymmetries: E.g. response of detector to K^{+}can differ from K^{-}
- Production asymmetries: At time of production, can produce more D^{0} than \bar{D}^{0} (pp collisions)
- Control of these asymmetries requires essentially a dedicated analysis per physics result

Mixing and CPV in WS $D^{0} \rightarrow K^{+} \pi^{-}$

PRD97 (2018) 031101 PRD95 (2017) 052004

- Responsible for first-ever single experiment observation of Mixing in D^{0}
- $R^{ \pm}(t)=R_{D}^{ \pm}+\sqrt{R_{D}^{ \pm}} y^{ \pm} \frac{t}{\tau}+\frac{\left(x^{\prime \pm}\right)^{2}+\left(y^{\prime}\right)^{2}}{4}\left(\frac{t}{\tau}\right)^{2}$
- Current measurements:
- Prompt: Runl+2015+2016
- Doubly-Tagged: Run1
- Statistic dominated. Dominant systematic in prompt is secondary overlap, in DT is indepth knowledge of detection asymmetry
- Legacy updates soon - watch this space

Prompt

Parameter	Value
R_{D}^{+}	$3.454 \pm 0.040 \pm 0.020$
y^{++}	$5.01 \pm 0.64 \pm 0.38$
$\left(x^{\prime+}\right)^{2}$	$0.061 \pm 0.032 \pm 0.019$
R_{D}^{-}	$3.454 \pm 0.040 \pm 0.020$
y^{\prime}	$5.54 \pm 0.64 \pm 0.38$
$\left(x^{\prime-}\right)^{2}$	$0.016 \pm 0.033 \pm 0.020$

DT

 $\left(x^{\prime+}\right)^{2}\left[10^{-4}\right]-0.19 \pm 4.46 \pm 0.31$ $y^{\prime+}\left[10^{-3}\right] \quad 5.81 \pm 5.25 \pm 0.32$ $R_{D}^{-}\left[10^{-3}\right] \quad 3.60 \pm 0.15 \pm 0.07$ $\left(x^{\prime-}\right)^{2}\left[10^{-4}\right] \quad 0.79 \pm 4.31 \pm 0.38$ $y^{\prime-}\left[10^{-3}\right] \quad 3.32 \pm 5.21 \pm 0.40$ $\underline{\chi^{2} / \mathrm{ndf}} \quad 4.5 / 4$

Mixing/CPV in D^{0}

- Can perform a similar analysis with $D^{0} \rightarrow K_{s}^{0} \pi^{+} \pi^{-}$by splitting into bins of constant strong phase ("Bin-flip" method), with a slightly different time dependence

$$
R_{b j}^{ \pm} \approx \frac{r_{b}+r_{b} \frac{\left\langle t^{2}\right\rangle_{j}}{4} \operatorname{Re}\left(z_{C P}^{2}-\Delta z^{2}\right)+\frac{\left\langle t^{2}\right\rangle_{j}}{4}\left|z_{C P} \pm \Delta z\right|^{2}+\sqrt{r_{b}}\langle t\rangle_{j} \operatorname{Re}\left[X_{b}^{*}\left(z_{C P} \pm \Delta z\right)\right]}{1+\frac{\left\langle t^{2}\right\rangle_{j}}{4} \operatorname{Re}\left(z_{C P}^{2}-\Delta z^{2}\right)+r_{b} \frac{\left\langle t^{2}\right\rangle_{j}}{4}\left|z_{C P} \pm \Delta z\right|^{2}+\sqrt{r_{b}}\langle t\rangle_{j} \operatorname{Re}\left[X_{b}\left(z_{C P} \pm \Delta z\right)\right]}
$$

$$
\begin{aligned}
& x_{C P}=-\operatorname{Im}\left(z_{C P}\right)=\frac{1}{2}\left[x \cos \phi\left(\left|\frac{q}{p}\right|+\left|\frac{p}{q}\right|\right)+y \sin \phi\left(\left|\frac{q}{p}\right|-\left|\frac{p}{q}\right|\right)\right] \text {, } \\
& \Delta x=-\operatorname{Im}(\Delta z)=\frac{1}{2}\left[x \cos \phi\left(\left|\frac{q}{p}\right|-\left|\frac{p}{q}\right|\right)+y \sin \phi\left(\left|\frac{q}{p}\right|+\left|\frac{p}{q}\right|\right)\right] \\
& y_{C P}=-\operatorname{Re}\left(z_{C P}\right)=\frac{1}{2}\left[y \cos \phi\left(\left|\frac{q}{p}\right|+\left|\frac{p}{q}\right|\right)-x \sin \phi\left(\left|\frac{q}{p}\right|-\left|\frac{p}{q}\right|\right)\right] \\
& \Delta y=-\operatorname{Re}(\Delta z)=\frac{1}{2}\left[y \cos \phi\left(\left|\frac{q}{p}\right|-\left|\frac{p}{q}\right|\right)-x \sin \phi\left(\left|\frac{q}{p}\right|+\left|\frac{p}{q}\right|\right)\right]
\end{aligned}
$$

Fit for Prompt

LHCb-PAPER-2022-020
PRL 127, (2021) 111801

- Data - Fil

Promp
$x_{C P}=(3.97 \pm 0.46 \pm 0.29) \times 10^{-3}, \quad \mathrm{x}_{\mathrm{CP}}=[4.29 \pm 1.48($ stat $) \pm 0.26(\mathrm{syst})] \times 10^{-3}$, $y_{C P}=(4.59 \pm 1.20 \pm 0.85) \times 10^{-3}, \quad \mathrm{y}_{\mathrm{CP}}=[12.61 \pm 3.12(\mathrm{stat}) \pm 0.83($ syst $)] \times 10^{-3}$, $\Delta x=(-0.27 \pm 0.18 \pm 0.01) \times 10^{-3}$

- Statistics limited
- Dominant systematic: $D^{0} \mu$ tagging (SL) and resolution from detector effects (Prompt)
- First ever measurement of non-zero x

$$
\Delta y=(\quad 0.20 \pm 0.36 \pm 0.13) \times 10^{-3}
$$

$\Delta \mathrm{x}=[-0.77 \pm 0.93$ (stat) ± 0.28 (syst) $] \times 10^{-3}, \mathrm{~N}^{\prime}$ $\begin{aligned} \Delta x & =[-0.77 \pm 0.93(\text { stat }) \pm 0.28(\text { syst })] \times 10^{-3} \\ \Delta y & =[3.01 \pm 1.92(\text { stat }) \pm 0.26(\text { syst })] \times 10^{-3}\end{aligned}$地

- Measure $x_{C P}, y_{C P}, \Delta X, \Delta Y\left(A_{\Gamma}\right)$
- Prompt, SL(2016-2018) + combination

Mixing in $D^{0} \rightarrow K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-} \quad$ PRL 116, $241801(\varepsilon$ • Motivation: Necessary for extraction of γ from $B \rightarrow D^{0} K$ decays
 - Time dependence described by
 $$
R(t) \simeq\left(r_{D}^{K 3 \pi}\right)^{2}-r_{D}^{K 3 \pi} R_{D}^{K 3 \pi} y_{K 3 \pi}^{\prime} \frac{t}{\tau}+\frac{x^{2}+y^{2}}{4}\left(\frac{t}{\tau}\right)^{2}
$$
 Background

 ``` R K3\pi

\mp@subsup{e}{}{i\mp@subsup{\delta}{D}{K}\pi}=\langle\operatorname{cos}\delta\rangle+i\langle\operatorname{sin}\delta```\\ \\```
R K3\pi}\mp@subsup{e}{}{i\mp@subsup{\delta}{D}{K}\pi}=\langle\operatorname{cos}\delta\rangle+i\langle\operatorname{sin}\delta

``` \\ \[
y_{K 3 \pi}^{\prime}=y \cos \delta_{D}^{K 3 \pi}-x \sin \delta_{D}^{K 3 \pi}
\]}


Prompt Run1 only \(\rightarrow\) stay tuned

\section*{\(A_{\Gamma}\) or \(\Delta Y\)}
- Can express the CP asymmetry to CP eigenstates as

PRD104 (2021) 072010
JHEP04(2015)043
PRL 118 (2017) 261803
PRD 101 (2020) 012005
- \(A_{C P}(t)=\frac{\Gamma\left(D^{0} \rightarrow f\right)-\Gamma\left(\bar{D}^{0} \rightarrow f\right)}{\Gamma\left(D^{0} \rightarrow f\right)+\Gamma\left(\bar{D}^{0} \rightarrow f\right)} \simeq A_{C P}^{d i r}+\frac{t}{\tau} A_{C P}^{i n d}+\mathcal{O}\left(\left(\frac{t}{\tau}\right)^{2}\right)\)
\[
-A_{\Gamma} \text { or } \Delta Y \simeq-x_{12} \sin \phi_{f}^{M}-y_{12} a_{f}^{d}
\]

- Can be expressed as the difference between effective litetimes \(\rightarrow\) measure slope of time dependent CP asymmetry
- Samples: Prompt Run 2, Evaluate using \(D^{0} \rightarrow K^{-} \pi^{+}\)for special treatment of kinematic dependent nuisance asymmetries.
\[
\Delta Y=(-2.7 \pm 1.3 \pm 0.3) \times 10^{-4}
\]
- Combined with previous measurements for Legacy Result
\[
\begin{aligned}
\Delta Y_{K K} & =(-0.3 \pm 1.3 \pm 0.3) \times 10^{-4} \\
\Delta Y_{\pi \pi} & =(-3.6 \pm 2.4 \pm 0.4) \times 10^{-4} \\
\Delta Y & =(-1.0 \pm 1.1 \pm 0.3) \times 10^{-4} \\
\Delta Y_{K K}-\Delta Y_{\pi \pi} & =(3.3 \pm 2.7 \pm 0.2) \times 10^{-4}
\end{aligned}
\]

\section*{\(y_{C P}\)}

\section*{PRD 105, 092013}
- Can re-write the effective decay widths relative to Cabibbo Favoured \(D^{0} \rightarrow K^{-} \pi^{+}\) as
- \(y_{C P}^{f}=\frac{\hat{\Gamma}\left(D^{0} \rightarrow f\right)+\hat{\Gamma}\left(\bar{D}^{0} \rightarrow f\right)}{2 \Gamma}-1=y_{12} \cos \phi_{f}^{\Gamma}\)
- However, should no longer neglect \(D^{0} \rightarrow K^{-} \pi^{+}\)influence (JHEP 2022, 162 (2022)), hence
- \(\frac{\hat{\Gamma}\left(D^{0} \rightarrow f\right)+\hat{\Gamma}\left(\bar{D}^{0} \rightarrow f\right)}{\hat{\Gamma}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)+\hat{\Gamma}\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right)}-1 \simeq y_{C P}^{f}-y_{C P}^{K \pi} \simeq y\left(1+\sqrt{R_{D}}\right)\)
- Hence, measure \(R^{f}(t)=\frac{N\left(D^{0} \rightarrow f, t\right)}{N\left(D^{0} \rightarrow K^{-} \pi^{+}, t\right)} \propto e^{-\left(y_{C P}^{f}-y_{C P}^{K}\right) t / \tau} \frac{\epsilon(f, t)}{\epsilon\left(K^{-} \pi^{+}, t\right)}\), using prompt decays in full Run2 dataset, accounting for secondary contamination
\[
\begin{aligned}
& y_{C P}^{\pi \pi}-y_{C P}^{K \pi}=(6.57 \pm 0.53 \pm 0.16) \times 10^{-3} \\
& y_{C P}^{K K}-y_{C P}^{K \pi}=(7.08 \pm 0.30 \pm 0.14) \times 10^{-3}
\end{aligned}
\]

\section*{Largest systematic is background modelling/understanding}



\section*{Zum Einkaufen Gehen}
\begin{tabular}{|c|c|c|c|c|}
\hline Measurement & Run 1 & Run 2 & Run 1/2 Legacy & Run 3 \\
\hline WS Mixing/CPV & Prompt + DT & Prompt Run1 +2015/16 & Stay Tuned & \\
\hline DACP & Prompt + SL & Prompt+SL (+Discovery) & Prompt+SL (+Discovery) & \multirow[t]{2}{*}{See
E. Gersabeck} \\
\hline ACP(KK) & Prompt+SL & Prompt+SL & Prompt+SL & \\
\hline \(\Delta Y\) & Prompt + SL & Prompt + SL & Prompt + SL & \multirow{4}{*}{\begin{tabular}{l}
Stay \\
Tuned
\end{tabular}} \\
\hline \(D^{0} \rightarrow K_{s}^{0} \pi^{+} \pi^{-}\) & Model Dependent & Bin Flip (Prompt + SL) & & \\
\hline \(D^{0} \rightarrow K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}\) & Prompt & Stay Tuned & & \\
\hline yCP & SL & Prompt & & \\
\hline \(D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\) & & & & \\
\hline \(D^{0} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-}\) & & & & \\
\hline \(D^{0} \rightarrow K_{S}^{0} h h^{\prime}\) & & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Stay \\
Tuned
\end{tabular}}} & \\
\hline & & & & \\
\hline ... & & & & \\
\hline
\end{tabular}

\section*{Conclusion}
- LHCb has collected the largest sample of Charm hadrons in the world. With it, we have
- Up-ended conventions on charm baryon lifetimes
- Pushed the boundaries on Mixing and indirect CPV searches
- Are testing theory with unprecedented precision
- Run3 is now - we shall see what the future holds


D mixing, indirect CPV and charm hadron lifetimes


\section*{Backup}

\section*{Search for \(\Omega_{c c}^{+}\)LHCb-PAPER-2021-011}
- Search with 2016-2018 data in decay mode \(\Omega_{c c}^{+} \rightarrow \Xi_{c}^{+} K^{-} \pi^{+}\)

- Multivariate selection (BDT) trained to reduce combinatorial background
- Local significance: \(3.2 \sigma\), Global: \(1.8 \sigma\)
- Upper limits set on \(\sigma \times \mathscr{B}\) at \(1.1 \times 10^{-1}\) to \(0.5 \times 10^{-2}\) for \(\tau \in[40,200]\) fs


```

