

Direct CP violation searches in multi-body D decays at LHCb $D^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}$ & $D^{0} \rightarrow K_{S}K^{\pm}\pi^{\mp} NEW!$

Marco Gersabeck (The University of Manchester) on behalf of the LHCb collaboration

@MarcoGersabeck

PP

The University of Manchester

Adding spin

@MarcoGersabeck

Keeping weak structure

D0

@MarcoGersabeck

→ VP

@MarcoGersabeck

Ρ

- with two variables
- Dalitz plot
- Dalitz plots give access to interfering amplitudes with rapidly varying strong phases
 - Fertile ground for local CP asymmetries

LHCb-PAPER-2023-019

Multi-body intereference

• Three-body pseudoscalar final-state phase space can be described

Energy test

- Model-independent unbinned two-sample test to discover localised asymmetries
- Compares weighted distances in phase spaces among all pairs of events
 - \rightarrow Grouped in D⁰-D⁰, \overline{D}^0 - \overline{D}^0 , D⁰- \overline{D}^0
- Weighting function decreases with distance
 - Emphasising localised effects
- Weighted distances are averaged with opposite sign for D⁰-D⁰ cross term
 - Resulting statistic, T, approximately 0 if D⁰ & D⁰ from same underlying distribution
 - \Rightarrow Asymmetry leads to T > 0
- T-value distribution for CP symmetry hypothesis from repeated random assignment of $D^0-\overline{D}^0$ flavour tag

p-value obtained as fraction of distribution greater than measured T

Method: Aslan, Zech, 2004, Wiliams, 2011, Parkes et al. 2017, Barter, Burr, Parkes, 2018, Zech 2018 @MarcoGersabeck

 $d_{ij}^2 = \left[(\Delta s_{12})_{ij}^2 + (\Delta s_{13})_{ij}^2 + (\Delta s_{23})_{ij}^2 \right]$

 $\psi_{ij} = e^{-d_{ij}^2/2\delta^2}$

6

Sensitivity

• Energy test is a discovery tool

- ➡ Single result is a p-value for agreement with CP symmetry hypothesis
 - Does not yield limits for specific models
- Sensitivity tests can test effect of models
 - Can identify scenarios that should lead to observations
 - Non-observation can then use these as limits

LHCb-PAPER-2023-019

The University of Manchester

- All samples flavour-tagged by reconstructing $D^{*+} \rightarrow D^0 \pi^+$ decays
- Purity above 90% (~80% for resolved π^0)
- All signal candidates in mass window passed to energy test
 - \rightarrow Resolved and merged π^0 samples are combined
 - Fit just indicative to assess background level

2.47M signal candidates (Run 1:0.67M)

@MarcoGersabeck

LHCb-PAPER-2023-019

Data

1.57M signal candidates in both final states

Nuisances

- All selected data analysed in energy test without efficiency correction or background subtraction
- Sources of asymmetry other than signal CP violation:
 - Background asymmetry (CP or other)
 - Symmetric background also affects (dilutes) sensitivity
 - Production or detection asymmetry
 - Needs to lead to localised effects in phase space
- **Cross-checks**
 - Measure control samples
 - Background dominated mass side bands
 - Control modes with related final states: $K^{-}\pi^{+}\pi^{0}, K_{S}\pi^{+}\pi^{-}, K^{-}\pi^{+}\pi^{+}\pi^{-}$
 - Pseudo-experiments with injected asymmetries
 - Sub-sample consistency checks (year, dipole polarity, trigger selection)

LHCb-PAPER-2023-019

 \rightarrow D⁰ \rightarrow $\pi^+\pi^-\pi^0$: 62% \rightarrow D⁰ \rightarrow K_SK⁻ π^+ : 70% NEW $\rightarrow D^0 \rightarrow K_S K^+ \pi^-: 66\%$ $imes 10^5$ $_{\infty}$ 6.0 r 10^{-1} LHCb $6\,\mathrm{fb}^{-1}$ $\times 5.0$

LHCb-PAPER-2023-019

- LHCb conducted two model-independent searches for CP violation in three-body D⁰ decays
- Energy-test results for $D^0 \rightarrow K_S K^- \pi^+$, $D^0 \rightarrow K_S K^+ \pi^-$, and $D^0 \rightarrow \pi^+\pi^-\pi^0$ decays shows agreement with CP symmetry
- No indication of CP violation in modes related to two-body discovery channels
 - Sensitivity is still above observed two-body levels

Conclusions

Looking forward to analyses of other channels and Run 3 data!

Including $D_{(s)}^{+} \rightarrow K^{-}K^{+}K^{+}$, JHEP 07 (2023) 067 See also Plenary talk by Evelina Gersabeck

