# Meson and baryon spectroscopy with charm quarks from lattice QCD 

Sara Collins

Universität Regensburg

CHARM 2023 workshop, Siegen July 18th 2023

## Spectroscopy studies on the lattice

Motivation:
$\star$ Postdiction of states that are well established experimentally.

- Demonstration of lattice techniques.
- (Precision) tests show systematics are under control.
$\star$ Postdiction of states less well established experimentally.
- Help with spin and parity assignments.
- Whether a bound state/resonance exists.
$\star$ Prediction of new states.
- Expected from quark model.
- Non-conventional, $q \bar{q} q \bar{q}$, pentaquarks, hybrids.
$\star$ Testing theoretical descriptions.
$\star$ Investigating the internal structure of non-standard candidates.


## Overview

$\star$ Lattice details and challenges.
$\star$ Lower lying hadron spectroscopy.
$\star$ Open charm: positive parity $D$ and $D_{s}$ mesons, $Q Q \bar{q} \bar{q}$ tetra-quarks, $T_{c c}$, and $T_{b c}$.
$\star$ Closed charm: charmonium, $c \bar{c} q q q$ pentaquarks.
$\star$ Internal structure.
$\star$ Summary.
Not exhaustive!

## Extracting hadron masses on the lattice

 t 0

Construct two-point correlation functions using interpolators $\mathcal{O}_{h}$.

$$
\begin{aligned}
\mathcal{C}_{2 p t}(t) & =\left\langle\mathcal{O}_{h}(t) \mathcal{O}_{h}^{\dagger}(0)\right\rangle \\
& =\sum_{n}\langle\Omega| \mathcal{O}_{h}|n\rangle \frac{e^{-E_{n} t}}{2 E_{n} V_{3}}\langle n| \mathcal{O}_{h}^{\dagger}|\Omega\rangle=\left|Z_{0}\right|^{2} e^{-E_{0} t}+\left|Z_{1}\right|^{2} e^{-E_{1} t}+\ldots
\end{aligned}
$$

Spectral decomposition includes all states with the same quantum numbers as $\mathcal{O}_{h}$. Challenges:

- It can be difficult to isolate the states of interest, e.g. if want $E_{n}, n>0$, in particular, if the spectrum is dense.
- Often use a large basis of interpolators $\mathcal{O}_{h}^{i}$ and compute $C^{i j}(t)$ and solve the generalised eigenvalue problem. Eigenvalues fall off as $\lambda^{i}(t) \sim e^{-E_{i} t}\left[1+e^{-\Delta E t}+\ldots\right]$.


## Extracting hadron masses on the lattice

## Challenges:

- Evaluation of quark line diagrams for flavour singlet mesons, non-standard hadrons, hadrons close to or above strong decay thresholds.

- Euclidean time $\rightarrow$ cannot directly extract properties of hadrons close to or above strong decay thresholds.
- Reduced symmetry on the lattice means it is difficult to identify continuum spin associated with $E_{n}$. Hadron at rest, $S U(2) \rightarrow^{2} O$ with $P C$, further reduced for a hadron in flight.
- Discretisation effects can be significant for hadrons containing charm quarks. $O\left(a^{n} m_{c}^{n}\right)$ with $0.2 \lesssim a m_{c} \lesssim 0.7$ for $0.04<a<0.1 \mathrm{fm}$.
- Simulating at unphysical u/d quark masses.

Required: $a \rightarrow 0, m_{u / d} \rightarrow m_{u / d}^{\text {phys }},(V \rightarrow \infty)$.
Usually simulate in (electrically neutral) isospin limit: $m_{u}=m_{d}=m_{\ell}$.
Only isospin conserving strong decays are relevant.

## Low lying meson spectra




Systematics under control (through continuum, chiral extrapolation): general agreement with the experimental spectrum.
Predictions: $B_{c}$ states. Recent measurements of $B_{c}(2 S)$ and $B_{c}^{*}(2 S)$ masses by [CMS,1902.00571]
$m_{B_{c}}=6.871(2) \mathrm{GeV}$ and $\Delta m=29(2) \mathrm{MeV}$ and [LHCb,1904.00081]
$m_{B_{c}}=6.841(1) \mathrm{GeV}$ and $\Delta m=31(1) \mathrm{MeV}$.
Charm23: J-A. Urrea Nino, 7/18, "Towards the physical charmonium
spectrum with improved distillation".

## Charmonium 1S hyperfine splitting

High precision possible. Discrepancy possibly due to omission of $\bar{c} c$ annihilation diagrams.
[HPQCD, 2005.01845]


This work: QCD+QED
This work: pure QCD
Fermilab/MILC 19
$\chi$ QCD14
Briceño et al 12
HPQCD12

LHCb17
LHCb15
KEDR
$c \bar{c}$ annihilation suppressed (OZI rule), $\Gamma_{J / \psi} \sim 93 \mathrm{keV}, \Gamma_{\eta_{c}}=32 \mathrm{MeV}$. Mixing with light flavour singlet states and glueballs must be taken into account.
Charm23: Talk by T. Korzec 7/20 "Iso-Scalar States from Lattice QCD". Talk by R. Höllwieser, 7/20 "Charmonium and glueballs including light
 hadrons".

## Charmed baryons



[Briceno et al.,1207.3536], [ETMC,1406.4310], [Brown,1409.0497], [ILGTI,1211.6277], RQCD preliminary.
[BMWc, 1406.4088] $\Xi_{c c}^{++}-\Xi_{c c}^{+}=2.16(11)(17) \mathrm{MeV}$ with $-2.53(11)(06) \mathrm{MeV}(\mathrm{QCD})$ and 4.69(10)(17) MeV (QED).
$\Xi_{c c}^{++}$baryon: [Liu et al.,0909.3294] $m_{\Xi_{c c}}=3665 \pm 17 \pm 14_{-78}^{+0} \mathrm{MeV}$.
[LHCb, 1707.01621] $m_{\bar{E}_{c c}^{++}}=3621.40 \pm 0.72 \pm 0.27 \pm 0.14 \mathrm{MeV}$.
Earlier: [SELEX,hep-ex/0208014] $m_{\equiv_{c c}^{+}}=3519 \pm 1 \mathrm{MeV}$.
Note: Decay $\bar{\Xi}_{c c}^{*} \rightarrow \bar{\Xi}_{c c} \pi$ not possible as $\Delta M\left(\bar{\Xi}_{c c}^{*}-\bar{\Xi}_{c c}\right)<m_{\pi}$.
Also: predictions for $c c c, c b \ell, c c b$ and $c b b$ etc. See, e.g., [Brown et al.,1409.0497].

## Near or above strong decay thresholds



$$
\left.\begin{array}{rlrl}
t_{\ell}(s) & =\frac{1}{\rho(s)} \frac{1}{\cot \delta_{\ell}(s)-i} & \sigma \propto\left|\rho t_{\ell}(s)\right|^{2}=\frac{1}{\cot ^{2} \delta+1} & t_{\ell}(s)
\end{array}\right)=\frac{8 \pi E_{c m} \Gamma}{m_{R}^{2}-E_{c m}^{2}-i E_{c m} \Gamma},
$$


$B$ : bound state

vB: virtual bound state


Coupled channels: $t_{\ell, M_{1} M_{1}}, t_{\ell, M_{2} M_{1}}, t_{\ell, M_{2} M_{2}}$.

## Near or above strong decay thresholds

Properties of resonances cannot be extracted directly on a (Euclidean) lattice. Infinite volume: continuous spectrum.

Finite volume: discrete spectrum.


$$
\begin{aligned}
& \operatorname{det}\left[\tilde{K}_{\ell}^{-1}\left(E_{c m}\right) \delta_{\ell \ell^{\prime}}-B_{\ell^{\prime} \ell}^{\vec{P}, \Lambda}\left(E_{c m}\right)\right]=0, \\
& t_{\ell}^{-1}=\frac{2}{E_{c m} p^{2 \ell}} \tilde{K}_{\ell}^{-1}-i \rho, \quad \tilde{K}_{\ell}^{-1}=p^{2 \ell+1} \cot \delta
\end{aligned}
$$

From discrete $E_{n}$ constrain $t_{\ell}^{-1}$ then analytically continue to the complex plane.

Elastic scattering: $E_{n} \rightarrow \delta$


Coupled channel scattering: under-constrained problem. Choose a parameterisation for $\tilde{K}^{-1}$ ( $t_{\ell}^{-1}$ ) and constrain the parameters using $E_{n}$. Three-body decays, see, e.g., review [Romero-Lopez,2212.13793]. Charm23 M. Hansen, 7/21, "Future Theory".

## Open charm mesons: $D$ and $D_{s}$ spectrum




Only thresholds for QCD in the isospin limit shown.

## Puzzles:

$\star$ Very narrow states $D_{s 0}^{*}(2317)$ and $D_{s 1}(2460)$ were predicted to lie much higher by early quark models, e.g. [Godfrey, Isgur,1985] and early lattice calculations, e.g. [Lewis, Woloshyn, hep-lat/0003011], [Hein et al.,hep-ph/0003130]. Similarly, for $D_{0}^{*}(2300)$.
$\star$ Why is $M_{D_{0}^{*}}(2300) \sim M_{D_{s 0}^{*}}(2317)$ and $M_{D_{1}}(2430) \sim M_{D_{s 1}}(2460)$ ?
Narrow states close to a threshold: non-standard quark content, $c \bar{\ell} \ell \bar{q}, q \in\{\ell, s\}$. Molecular states: weakly bound meson-meson $((c \bar{\ell})-(\ell \bar{q}))$ states.
Tetraquark states: compact 4-quark $((c \ell)-(\bar{\ell} \bar{q}))$ states ...

## $D$ and $D_{s}$ spectrum

Heavy quark symmetry
$Q \bar{q}$ meson is hydrogen-like system, $Q$ acts as a colour source.
Limit $m_{Q} \rightarrow \infty$
QNs: $j_{q}=\ell+s_{q}=\frac{1}{2}, \frac{3}{2}, \ldots$,
Finite $m_{Q}$
QNs: $J=\ell+S=0,1,2, \ldots$,
$S=s_{q}+s_{Q}, P=-(-1)^{\ell}$

[lsgur, Wise,1991]:
$J^{P}=0^{+}, 1^{+},\left(m_{Q} \rightarrow \infty\right) j_{q}=\frac{1}{2}$, decay in S-wave.
$J^{P}=1^{+}, 2^{+},\left(m_{Q} \rightarrow \infty\right) j_{q}=\frac{3}{2}$, decay in D-wave.

SU(3) flavour symmetry: $\begin{array}{ll}c \bar{q} & \overline{3}\end{array}$
$c \bar{q} q \bar{q} \quad \overline{\mathbf{3}} \otimes \mathbf{8}=\mathbf{1 5} \oplus \mathbf{6} \oplus \overline{\mathbf{3}}$
$\overline{\mathbf{3}} \otimes \mathbf{1}=\overline{\mathbf{3}}$
$q \in\{\bar{u}, \bar{d}, \bar{s}\}$

Some remnant of these symmetries expected in the observed spectrum.

## $D$ and $D_{s}$ spectrum: $J^{P}=0^{+}, 1^{+}, 2^{+}$

Finite lattice spacing, unphysical light quark masses (advantageous in terms of thresholds).



Elastic scattering:
[Mohler et al.,1308.3175,1403.8103] I=0 S-wave $D K$ and $D^{*} K, m_{\pi}=156$ and 266 MeV . [RQCD,1706.01247] $\mathrm{I}=0$ S-wave $D K$ and $D^{*} K, m_{\pi}=150$ and 290 MeV . [HadSpec,2008.06432] S-, P- and D-wave $I=0 D K$ and $(I=0,1) D \bar{K}, m_{\pi}=391,239 \mathrm{MeV}$.
[Mohler et al.,1208.4059] $\mathrm{I}=1 / 2$ S-wave $D \pi$ and $D^{*} \pi, m_{\pi}=266 \mathrm{MeV}$.
[HadSpec,2102.04973] $\mathrm{I}=1 / 2 \mathrm{~S}$ - and P -wave $D \pi, m_{\pi}=239 \mathrm{MeV}$.
Coupled channel:
[HadSpec,1607.07093] I $=1 / 2$ S-, P- and D-wave $D \pi, D \eta, D_{s} \bar{K}, m_{\pi}=391 \mathrm{MeV}$. [HadSpec,2205.05026] I $=1 / 2 \mathrm{~S}-, \mathrm{P}$ - and D-wave $D^{*} \pi, D \pi, m_{\pi}=391 \mathrm{MeV}$.

## $D_{s 0}^{*}(2317): J^{P}=0^{+}$



$D_{s 0}^{*}$ sensitive to the light quark mass. Remains a bound state as $m_{\pi} \rightarrow m_{\pi}^{\text {phys }}$.
Some systematics not under control, e.g. discretisation effects.
Also: $J^{P}=1^{+}, D_{s 1}(2460)$
Expt: $m=2.460 \mathrm{GeV}, \Gamma<3.5 \mathrm{MeV}$.
[Mohler et al.,1403.8103] S-wave $D^{*} K, m_{\pi}=156 \mathrm{MeV}, m=2.484(11) \mathrm{GeV}$.
[RQCD,1706.01247] S-wave $D^{*} K, m_{\pi}=150 \mathrm{MeV}, m=2.451(4) \mathrm{GeV}$.
$J^{P}=2^{+}, D_{s 2}(2573)$
Expt: $m=2.569(1) \mathrm{GeV}, \Gamma=16.9(7) \mathrm{MeV}$. [HadSpec,2008.06432] D-wave $D K, m_{\pi}=391 \mathrm{MeV} . m=2.583(3) \mathrm{GeV}, \Gamma=3.4_{-1.1}^{+1.7} \mathrm{MeV}$. [Mohler et al.,1403.8103] c $\bar{q}$,

$$
m_{\pi}=156 \mathrm{MeV}, m=2.596(11) \mathrm{GeV}
$$

## $D$ spectrum: $J^{P}=0^{+}, 1^{+}, 2^{+}$



$$
\begin{aligned}
& \rho_{i} \rho_{j}\left|t_{i j}\right|^{2} \\
& J^{P}=0^{+} \\
& D \pi\left\{{ }^{1} S_{0} \leftrightarrow{ }^{1} S_{0}\right\} \\
& \\
& J^{P}=1^{+} \\
& D^{*} \pi\left\{^{3} S_{1} \leftrightarrow{ }^{3} S_{1}\right\} \\
& D^{*} \pi\left\{^{3} S_{1} \leftrightarrow{ }^{3} D_{1}\right\} \\
& D^{*} \pi\left\{^{3} D_{1} \leftrightarrow{ }^{3} D_{1}\right\}
\end{aligned}
$$


$\star$ Note the $D^{*}$ is stable in these simulations.

Above: ${ }^{2 S+1} \ell_{J}$.

$$
\begin{aligned}
& J^{P}=2^{+} \\
& D \pi\left\{{ }^{1} D_{2} \leftrightarrow{ }^{1} D_{2}\right\} \\
& D \pi\left\{{ }^{1} D_{2}\right\} \leftrightarrow D^{*} \pi\left\{{ }^{3} D_{2}\right\} \\
& D^{*} \pi\left\{^{3} D_{2} \leftrightarrow{ }^{3} D_{2}\right\}
\end{aligned}
$$


$\star D_{0}^{*}$ and $D_{1}$ at unphysical $m_{\pi}$ are below experiment.
$\star$ Note that the $D \pi \pi$ threshold opens as $m_{\pi} \rightarrow m_{\pi}^{\text {phys }}$.
$\star$ Large coupling for $D_{1}$ to $D^{*} \pi$ suggests broad resonance as $m_{\pi} \rightarrow m_{\pi}^{\text {phys }}$.
$\star$ HQS: $D \pi\left\{{ }^{1} S_{0}\right\}$ and $D^{*} \pi\left\{{ }^{3} S_{1}\right\}$ amplitudes are very similar. Decoupling of $J^{P}=1^{+}$states: the $D^{*} \pi\left\{{ }^{3} S_{1} \leftrightarrow{ }^{3} D_{1}\right\}$ amplitude is consistent with zero and $D_{1}^{\prime}$ couples dominantly to $D^{*} \pi\left\{{ }^{3} D_{1}\right\}$.

## $D$ and $D_{s}$ spectrum

Unitarised chiral perturbation theory (UChPT) [Oller et al.,hep-ph/9803242], [Oller, Meißner,hep-ph/0011146]: near threshold states arise from the interactions between ground state charmed mesons and pseudo-Goldstone bosons. $T=1 /\left(V^{-1}-G\right)$.

Low energy constants fixed using lattice data [Liu et al.,1208.4535] for S-wave scattering lengths in $\mathrm{I}=3 / 2 D \pi, D_{s} \pi, D_{s} K, \mathrm{I}=0 D \bar{K}$ and $\mathrm{I}=1 D \bar{K}$ channels. $a=0.125 \mathrm{fm}$ and $m_{\pi}=190-380 \mathrm{MeV}$.
[Albaladejo et al.,1610.06727]: Reproduce the lattice finite volume $S=0, \mathrm{I}=1 / 2$ spectrum of [HadSpec,1607.07093], $m_{\pi}=391 \mathrm{MeV}$. Correspond to poles of $\tilde{T}=1 /\left(V^{-1}-\tilde{G}\right)$.

At $m_{\pi}=m_{\pi}^{\text {phys }}$, no free parameters: [Allaladejo et al.1.161.066727], [Du et al.,1712.07957]:

$$
\begin{array}{lllll}
D_{s 0}^{*}(2317) & 2315_{-28}^{+18} \mathrm{MeV} & D_{0}^{*} & 2105_{-8}^{+6}-i 102_{-11}^{+10} \mathrm{MeV} & 2451_{-26}^{+35}-i 134_{-4}^{+7} \mathrm{MeV} \\
D_{s 1}(2460) & 2456_{-21}^{+15} \mathrm{MeV} & D_{1} & 2247_{-8}^{+6}-i 107_{-10}^{+11} \mathrm{MeV} & 2555_{-30}^{+47}-i 203_{-9}^{+8} \mathrm{MeV}
\end{array}
$$

$J^{P}=0^{+}, \mathrm{I}=\frac{1}{2}$ : second pole position not reliably extracted in [HadSpec,1607.07093]. [Asokan et al.,2212.07856]: SU(3) constraints can be imposed.

Experiment: analysis of LHCb data in [Du et al.,1712.07957,1903.08516,2012.04599]. See also [Du et al.,2012.04599].

## $D$ and $D_{s}$ spectrum

$(c \bar{q})(q \bar{q})$
$\overline{3} \otimes 8=15 \oplus 6 \oplus \overline{3}$

[Guo et al., Lattice 22]

For $J^{P}=0^{+}$:
$\star D_{s 0}^{*}$ and lower $D_{0}^{*}$ arise from the $\overline{3}$ interaction ( $\rightarrow$ mass hierarchy). Higher $D_{0}^{*}$ due to 6 interaction.

丸 [Gregory et al.,2106.15391,2111.15544]: Lattice QCD simulations in SU(3) limit $m_{\pi}=600-700 \mathrm{MeV}$. Construct operators in 6 and 15 flavour representation.

Aim to show there is a state arising from the 6 -rep and interaction in 15 -rep is repulsive ( $\rightarrow$ molecular picture).

$$
M_{[6]}-\left(M_{D}+M_{\pi}\right)<0, \quad M_{[15]}-\left(M_{D}+M_{\pi}\right)>0
$$

## $c c \bar{q} \bar{q}$, tetraquarks

[LHCb,2109.01038,2109.01056]


Very narrow structure $T_{c c}$ in the $D^{0} D^{0} \pi^{+}$invariant mass spectrum.
Just below the $D^{0} D^{*+}$ threshold:
$M-\left(M_{D^{0}}+M_{D^{*+}}\right)=0.36(4) \mathrm{MeV}$.
$\Gamma=47.8 \mathrm{keV}, \mathrm{I}=0$ and $c c \bar{u} \bar{d}$ content suggested.
Phenomenological models: predictions with $\mathrm{I}=0, J^{P}=1^{+}$within $\pm 100 \mathrm{MeV}$ of the threshold, see e.g. [Karliner, Rosner,1707.07666], [Eichten, Quigg,1707.09575], [Janc, Rosner,hepph/0405208], [Carames et al.,2011].
[Padmanath and Prelovsek,2202.10110] DD* scattering $\mathrm{I}=0$ in S- and P-wave, $m_{\pi}=280 \mathrm{MeV}$.
[Chen et al.,2206.06185] $D D^{*}$ scattering in S-wave $\mathrm{I}=0$ and $1, m_{\pi}=350 \mathrm{MeV}$.
[HALQCD, 2302.04505] Scattering information obtained by determining the Nambu-Bethe-Salpeter wavefunction on the lattice and from this the $\mathrm{I}=0$ S-wave $D D^{*}$ interaction potential. $m_{\pi}=146 \mathrm{MeV}$.
$D^{*}$ is stable and energy region around $D D^{*}$ is below $D D \pi$ (and $D^{*} D^{*}$ ). "Simpler" calculation.

## $c c \bar{q} \bar{q}$, tetraquarks

Virtual bound state found.
[Chen et al., 2206.06185]

[Padmanath and Prelovsek, 2202.10110]

$$
m_{\pi}=280 \mathrm{MeV}
$$



$$
\delta m_{T_{c c}}=\operatorname{Re}\left(E_{c m}\right)-m_{D^{0}}-m_{D^{*+}}[\mathrm{MeV}]
$$

$$
m_{\pi}=146 \mathrm{MeV}
$$



Fit $p \cot \delta_{0}$ in the threshold region using the effective range expansion:

$$
p \cot \delta_{0}=\frac{1}{a_{0}}+\frac{1}{2} r_{0} p^{2}+O\left(p^{4}\right)
$$

[Du et al.,2303.09441]: effect of left hand cut needs to be investigated. Neglected so far. Modifications to Lüscher formalism, work in progress, see, e.g. [Raposo,Hansen,2301.03981].

## $c c \bar{q} \bar{q}$, tetraquarks

[HALQCD,2302.04505]

$\operatorname{Re}\left(1 / a_{0}\right)^{\text {expt }}$ shown at $m_{\pi}=m_{\pi}^{\text {phys }}=135 \mathrm{MeV}$.
Simulation at $m_{\pi}^{\text {phys }}$ challenging as $D^{*} \rightarrow D \pi$ and need to consider $T_{c c} \rightarrow D D \pi$ and isospin breaking.
[Chen et al.,2206.06185]: $\mathrm{I}=1 D D^{*}$ interaction is repulsive ( $\mathrm{I}=0$ is attractive). Consistent with $D D^{*}$ interaction in a molecular picture via $\rho$ exchange.

## $Q Q \bar{q} \bar{q}$, tetraquarks

$\star c c \bar{u} \bar{s}, b c \bar{u} \bar{d}, b c \bar{u} \bar{s}$ (and $b b q \bar{q}$ ) states are also of interest. $c c \bar{u} s$ : Finite volume study of [Junnarkar et al.,1810.12285] found $E_{\text {bind }}=8(8) \mathrm{MeV}$.
$\star$ Binding energy is found to increase with decreasing $m_{\pi}$ and increasing $m_{Q}$ :
Finite volume lattice studies of $J=1 b b \bar{u} \bar{d}\left(E_{b i n d}=100-150 \mathrm{MeV}\right)$ and $b b \bar{u} \bar{s}\left(E_{b i n d}=70-100 \mathrm{MeV}\right)$,
see, e.g. [Junnarkar et al.,1810.12285], [Leskovec et al.,1904.04197],
[Hudspith et al,2006.14294], [Meinel et al.,2205.13982], also $B B^{*}$ S-wave scattering study [Pflaumer et al.,2211.00951]
$\star$ Attractive interaction for $D D^{*}$ and $B B^{*}$ : so likely for $D B^{*}$.
$b c \bar{q} \bar{q}$ in between $b b \bar{q} \bar{q}$ (possible compact diquark-anti-diquark tetraquark) and $c c \bar{q} \bar{q}$ (possible DD* molecule).
Phenomenological models: both bound and unstable $b c \bar{q} \bar{q}$ states predicted, see, e.g., [Carlson et al.,1998], [Ebert et al.,0706.3853], [Karliner, Rosner,1707.07666], [Eichten, Quigg, 1707.09575].
$\star$ Lattice studies of $b c \bar{u} \bar{d}, b c \bar{u} \bar{s}$ : so far finite volume studies do not show a clear picture, see, e.g., [Hudspith et al.,2006.14294], [Meinel et al.,2205.13982].

## $b c \bar{q}_{1} \bar{q}_{2}$, tetraquarks, $J^{P}=1^{+}$

[Padmanath,Radhakrishnan,Mathur,2023]: DB* S-wave scattering ( $D^{*} B$ and $D^{*} B^{*}$ thresholds somewhat higher).

Lattice spacing ( $a \sim 0.06-0.12 \mathrm{fm}$ ) and quark mass dependence considered.
Range of $m_{\pi}=0.5-3.0 \mathrm{GeV}$ includes $m_{q_{1}}=m_{q_{2}} \sim m_{s}$ and $m_{c}$.
Lowest finite volume energy level for each $m_{\pi}$ used in the scattering analysis

$$
p \cot \delta_{0} \approx 1 / a_{0}+O(a)=A^{[0]}+O(a)
$$


$M\left(T_{c b}\right)-\left(M\left(B^{*}\right)+M(D)\right)=-43\left({ }_{-7}^{+6}\right)\left({ }_{-24}^{+14}\right) \mathrm{MeV} \quad M_{\pi}^{*}=2.73(21)(14) \mathrm{GeV}$

## Charmonium and $c \bar{c}$ exotics

[PDG, 2019]


Above the $D \bar{D}$ threshold, many states of interest including the $X(3872)\left(\chi_{c 1}(3872)\right)$ and $Z_{c}^{+}$(3900). $Z_{c} s$ are no $C$ eigenstates.
Challenges: Dense spectrum of states: a number of states with same/different $J^{P C}$ in a narrow energy region. Multiple two-particle and three-particle decay channels can be open. $X(3872), J^{P C}=1^{++}, I=0$, no recent work (see [Padmanath et al.,1503.03257], elastic $D D^{*}$ scattering, find a shallow bound state).
$Z_{c}^{+}(3900), J^{P}=1^{+}, \mathrm{I}=1$, no evidence as yet via Lüschers method, see, e.g. [CLQCD, 1907.03371]. [HALQCD,1602.03465] coupling between $D \bar{D}^{*}$ and $J / \psi \omega$ channels is responsible for the $Z_{C}$.

## Charmonium

[Piemonte et al.,1905.03506] $J^{P C}=1^{--}, 3^{--}$elastic $D \bar{D}$ scattering with $\ell=1,3$.
Conventional states: $1^{--}$channel, bound state $\psi(2 S)$ below the $D \bar{D}$ threshold, $\psi(3770)$ resonance slightly above. $\psi(3770)$ : $g$ consistent with expt., $\Gamma=g^{2} p^{3} /(6 \pi s) . m_{3--}$ compatible with $X(3842)$ [LHCb,1903.12240]. BR( $D \bar{D}) \sim 93 \%, J / \psi \eta$ and 3 body decays ignored.
[Prelovsek et al.,2011.02542] Coupled channel $D \bar{D}$ and $D_{s} \bar{D}_{s}$ S- and D-wave scattering. $J / \psi \omega$ and $\eta_{c} \eta$ channels ignored, $m_{c}>m_{c}^{\text {phys }}$.
$J^{P C}=0^{++}: \star$ State just below $D \bar{D}$ threshold ( $m_{\pi}>m_{\pi}^{\text {phys }!\text { ), not yet observed in expt. }}$
$\star$ Narrow resonance just below $D_{s} \bar{D}_{s}$ which may be related to $X(3915) / \chi_{c 0}(3930)$.
$\star$ Broad resonance which may be related to $X(3860)$.
$\star J^{P C}=2^{++}$similar to $\chi_{c 2}(3930)$.


Expt: $J^{P C}=0^{++}: X(3860)\left[\right.$ Belle,1704.01872], the $\chi_{c 0}(3930)[$ LLCbb,2009.00025] and the $X(3915)$ [BaBar,0711.2047], [Belle,0912.4451] below the $D_{s} \bar{D}_{s}$ threshold. Also the $X(3960)$ [LHCb,2210.15153].
Theory: additional shallow bound state suggested in [Gammermann et al., hep-ph/0612179]. Partner to $X(3872)$ suggested in [Hildago Duque et al., 1305.4487], [Baru et al., 1605.09649]. See also [Danilkin et al.,2111, 15033] and [Guo et al., 2212.00631].

## Charmonium hybrids

Charmonium states with an excited gluonic component.

Studies so far treat hybrids as stable.
Non-quark model $J^{P C}$, e.g. $1^{-+}$.


See also [HadSpec,1204.5425] and [ $\chi$ QCD, 1202.2205].
[Ray and McNeile,2110.14101]

[Sun et al.,2012.06228]


## Pentaquarks

A number of hidden charm penta-quarks have been discovered by [LHCb,1507.03414,1904.03947] in the J/ $\psi p$ channel. $P_{c}^{+}(4380)$ and $P_{c}^{+}(4450) \rightarrow$ $P_{c}^{+}(4312), P_{c}^{+}$(4440) and $P_{c}^{+}(4457)$.
Three narrow states close to $\Sigma_{c}^{+} \bar{D}^{0}$ and $\Sigma_{c}^{+} \bar{D}^{0 *}$ thresholds.


Molecular picture: $P_{c}^{+}$(4312) is a $J^{P}=\frac{1}{2}^{+} \Sigma_{c} \bar{D}$ bound state. $P_{c}^{+}(4440)$ and $P_{c}^{+}(4457)$ are $J^{P}=\frac{1}{2}^{-}$and $J^{P}=\frac{3}{2}^{+}$(or visa versa) $\Sigma_{c} \bar{D}^{*}$ bound states.

Compact pentaquark states and hadrocharmonia interpretations also considered.

## Pentaquarks $c \bar{c} q q q$

Other pentaquark states with different flavour content expected.
[Alberti et al.,1608.06537]: Investigated the hadroquarkonium model [Dubynskiy and Voloshin,0803.2224] in the static approximation.

Study the modification of the static potential in the presence of a variety of light mesons as well as of octet and decuplet baryons at $m_{\pi}=223 \mathrm{MeV}$.

Binding energies of a few MeV are seen.


Lattice study complicated due to the number of possible meson (M) and baryon (B) decay channels and the spins of the Ms and Bs.

First scattering study: [Skerbis and Prelovsek,1811.02285]

$\mathrm{NJ} / \psi$ and $N \eta_{c}$ scattering
$m_{\pi}=266 \mathrm{MeV}$ $m_{\pi}=266 \mathrm{MeV}$.

No significant energy shifts with respect to the non-interacting charmonium-nucleon energies.

No indication of a resonance or bound state.

## Pentaquarks $c \bar{c} q q q$

[Xing et al.,2210.08555]: S-wave scattering of $\Sigma_{c} \bar{D}$ and $\Sigma_{c} \bar{D}^{*}$ with $J^{P}=\frac{1^{-}}{}{ }^{-}$, $m_{\pi}=294 \mathrm{MeV}$.

Bound states poles in both channels.


$$
\begin{aligned}
& \Sigma_{c} \bar{D} \text { channel: } \\
& M_{P_{c}}-\left(M_{\Sigma_{c}}+M_{D}\right)=6(2)(2) \mathrm{MeV} \\
& \left(P_{c}(4312), \Delta M \sim 9 \mathrm{MeV}\right) \\
& \Sigma_{c} \bar{D}^{*} \text { channel: } \\
& M_{P_{c}}-\left(M_{\Sigma_{c}}+M_{D^{*}}\right)=6(2)(2) \mathrm{MeV} \\
& \left(P_{c}(4440) / P_{c}(4457)\right)
\end{aligned}
$$

Challenge: need to also consider $J / \psi N, \eta_{c} N, \Lambda_{c} \bar{D}, \Lambda_{c} \bar{D}^{*}$.

## Internal structure

$\star$ In addition to the mass spectrum, information on the internal structure of hadrons can be extracted on the lattice.
$\star$ Compute decay constants $\langle\Omega| J(0)|X\rangle$.
$\star$ Compute matrix elements $\left\langle X^{\prime}\left(p^{\prime}\right)\right| J(0)|X(p)\rangle \rightarrow$ e.g. form factors $\left(X=X^{\prime}\right.$, define radii) and transition form factors.
$\star$ Compare results for conventional and exotic states and to model predictions.
$\star$ As a first step, for hadrons with charm, hadron treated as stable.
For resonances for $0 \rightarrow 2,1 \rightarrow 2,2 \rightarrow 2$, see, e.g., [Bernard et al.,1205.4642], [Briceño, Hansen,1509.08507], [Baroni et al.,1812.10504] and [Lozano et al.,2205.11316].

## Internal structure

[RQCD,1706.01247]: $D_{s}$ decay constants

$$
\begin{array}{rlr}
J^{P}=0^{+} & \text {Vector } & \langle\Omega| \bar{s} \gamma_{\mu} c\left|D_{s 0}^{*}(\boldsymbol{p})\right\rangle=\mathbf{f}_{V}^{0^{+}} p_{\mu} \\
J^{P}=1^{+} & \text {Axial-vector } & \langle\Omega| \bar{s} \gamma_{\nu} \gamma_{5} c\left|D_{s 1}(\boldsymbol{p}, \boldsymbol{\epsilon})\right\rangle=\mathbf{f}_{\mathrm{A}}^{1^{+}} m_{D_{s 1}} \epsilon_{\nu}
\end{array}
$$

$$
f_{V}^{0^{+}}=114(2)(0)(+5)(10) \mathrm{MeV}, \quad f_{A}^{1^{+}}=194(3)(4)(+5)(10) \mathrm{MeV}
$$

(analogous to the pseudoscalar leptonic decay constant $f_{D_{s}}, \Gamma\left(D_{s} \rightarrow \ell \bar{\nu}\right) \propto f_{D_{s}}^{2}\left|V_{c s}\right|^{2}$.) Heavy quark $m_{Q} \rightarrow \infty$ limit: $\left(D_{s}, D_{s}^{*}\right),\left(D_{s 0}^{*}, D_{s 1}\right)$ form degenerate pairs.

$$
m_{c}=m_{c}^{\mathrm{ph}}<\infty: \quad f_{D_{s}^{*}} / f_{D_{s}}=1.10-1.26, \quad f_{D_{s 1}} / f_{D_{s 0}^{*}} \sim 1.7,
$$

Using [FLAG, 2111.09849] for $f_{D_{s}}$ and [Becieveric, 1201. 40339], [ETMC, 1610.0967]], [HPQCD, 1312.5264] for $f_{D_{s}^{*}}^{*}$
Nature of states: $P=+$ decay constants suppressed relative to $P=-$.

$$
f_{D_{s 0}^{*}} / f_{D_{s}} \approx 0.45, \quad f_{D_{s 1} 1} / f_{D_{s}^{*}} \approx 0.6-0.7
$$

States are spatially more extended (in a non-relativistic $\bar{q} q$ picture $f \propto|\psi(0)|)$ !
However, conventional mesons in the charmonium sector: roughly:
$\Gamma(\bar{c} c \rightarrow \gamma \gamma) \propto f_{\bar{c} c}^{2} / m_{\bar{c} c}$. From the expt. results: $f_{\chi c 0} / f_{\eta_{c}}=f_{0^{++}} / f_{0^{-+}} \sim 0.7$.

## Internal structure

[HadSpec,2301.08213]: electromagnetic (transition) form factors of $\eta_{c}, J / \psi, \chi_{c 0}$ and $\eta_{c}^{\prime}$.

$$
\left\langle h_{J^{\prime}}^{\prime}\left(\lambda^{\prime}, \vec{p}^{\prime}\right)\right| j^{\mu}\left|h_{J}(\lambda, \vec{p})\right\rangle, \quad \text { e.g. }\left\langle\chi_{c 0}\left(\vec{p}^{\prime}\right)\right| j^{\mu}\left|\chi_{c 0}(\vec{p})\right\rangle=\left(p+p^{\prime}\right)^{\mu} F\left(Q^{2}\right)
$$



Electromagnetic current $j_{\mu}$.
Charge radius:

$$
\begin{aligned}
& \left\langle r^{2}\right\rangle=-\left.6 \frac{d F\left(Q^{2}\right)}{d Q^{2}}\right|_{Q^{2}=0} \\
& \left\langle r_{\eta_{c}}^{2}\right\rangle^{\frac{1}{2}}<\left\langle r_{\chi c 0}^{2}\right\rangle^{\frac{1}{2}}<\left\langle r_{\eta_{c}^{\prime}}^{2}\right\rangle^{\frac{1}{2}}
\end{aligned}
$$

Firststep to computing radiative transtions involving exotic and excited charmonia.

See also e.g. [Dudek et al.,0902.2241], [CLQCD,1206.2086], [Becirevic et al.,1411.6426], [Schultz et al.,1501.07457], ...
Charm23: Talk by B. Colquhoun 7/18, "Precise determination of the decay rates of $\eta_{c} \rightarrow \gamma \gamma$, $J / \psi \rightarrow \gamma \eta_{c}$ and $J / \psi \rightarrow \eta_{c} e^{+} e^{-}$from lattice QCD"

## Internal structure

[Sun et al.,2012.06228]: 1S, 1P and 1D charmonium states and exotic $1^{-+}$ (hybrid $c \bar{c} g$ or 4-quark $c \bar{c} q \bar{q}$ state).
Left: charm quark mass momentum fraction $\langle x\rangle_{c}$, where

$$
1=\langle x\rangle_{q=c}+\sum_{q \in\{u, d, s, \ldots\}}\langle x\rangle_{q}+\langle x\rangle_{g}
$$

Right: mass contribution (determined from the charm quark sigma terms, $\left.\left\langle h_{J}\right| c \mathbb{1} \bar{c}\left|h_{J}\right\rangle\right)$.

$$
M \approx\left\langle H_{q}\right\rangle+\left\langle H_{g}\right\rangle
$$

Valence charm quark contribution to the mass, $\left\langle H_{q}\right\rangle$, gluon contribution $\left\langle H_{g}\right\rangle \approx M-\left\langle H_{q}\right\rangle$.
Left: $\mu=2 \mathrm{GeV}$
Comparison with conventional state of similar mass?



## Summary and outlook

Lattice studies can provide valuable information about mesons and baryons containing charm quarks. $c \bar{q}, c \bar{c}, c q q, c c q, c \bar{c} q \bar{q}, c c \bar{q} \bar{q}, c \bar{c} q q q, c \bar{c} g, \ldots$ hadrons are being actively studied.
Lower lying hadrons (stable under strong decay):
$\star$ Results with all systematics under control (discretisation effects, unphysical quark mass). Predictions in agreement with experiment.

Studies of near threshold states and resonances are challenging.
Results "consistent" with experiment or theory expectations.
$\star D_{s}, J^{P}=0^{+}, 1^{+}, 2^{+} . D, J^{P}=0^{+}, 1^{+}, 2^{+}$(amplitudes consistent with the expectations of heavy quark symmetry).
$\star T_{c c}$ : several studies find a virtual bound state. Scattering length increases $\left(1 / a_{0} \searrow\right)$ as $m_{\pi} \rightarrow m_{\pi}^{\text {phys }}$.
$\star T_{b c}$ : bound state found from first scattering study.
$\star P_{c}^{+}$: bound states found below $\Sigma_{c} \bar{D}$ and $\Sigma_{c} \bar{D}^{*}$ thresholds.
Some puzzles ( $m_{\pi}>m_{\pi}^{\text {phys }!): ~ t h e ~ m a s s e s ~ o f ~ t h e ~} D_{0}^{*}$ and $D_{1}$ are below experiment for $m_{\pi}>m_{\pi}^{\text {phys }}$.
An extra state is found below $D \bar{D}$ threshold in the $J^{P C}=0^{++}$channel in charmonium.
Future: internal structure of states will be probed through the evaluation of matrix elements.

