XYZ from BESIII

Chunhua Li (on behalf of the BESIII Collaboration) Liaoning Normal University <u>chunhua@lnnu.edu.cn</u>

The 11th International Workshop on Charm Physics July 17-21, 2023

Outline

- Introduction
- BESIII Detector
- XYZ from BESIII
 - X(3872)
 - Productions: $e^+e^- \rightarrow \gamma X(3872)$, $\omega X(3872)$, X(3872)
 - Decays: $X(3872) \rightarrow \pi^0 \chi_{c0}, \pi \pi \chi_{c0}$
 - A coupled channel analysis of the line shape
 - Y states with the exclusive process measurements
 - $e^+e^- \rightarrow \pi^+\pi^- J/\psi$, $\pi^+\pi^-\psi(2S)$, $\pi\pi\psi(3823)$, KKJ/ ψ , $\phi\chi_{cJ}$
 - $e^+e^- \rightarrow D^{(*+)}D^{(*-)}, D_s^{*+}D_s^{*-}, D^0D^{*-}\pi^+, D^{*0}D^{*-}\pi^+, D^+D^-\pi^+\pi^-$
 - $Z_{cs}(3985)$
- Summary

Hadrons

Charmonium(-like) Spectrum

- The charmonium spectrum is calculated with the potential model.
- Good agreement between theory and experiment below the opencharm threshold.
- Exotic candidates are observed at experiments above the opencharm thresholds.

BEPCII and **BESIII**

BEPCII and BESIII

Data Samples at BESIII

Data Samples BESIII

XYZ Data Samples at BESIII

 $e^+e^- \rightarrow \gamma X(3872)$

PRL 112, 092001 (2014) PRL 122, 232002 (2019)

- Study the line shape of e⁺e⁻→γX(3872) with the decays X(3872)→π⁺π⁻J/ψ and ωJ/ψ
- A single Breit-Wigner function to describe the line shape $M=4200.6^{+7.9}_{-13.3}\pm 3.0 \text{ MeV}/c^2$ $\Gamma=115^{+38}_{-26}\pm 12 \text{ MeV}$
- Agree with $\psi(4230)$ parameters, and support the radiative transition $\psi(4230) \rightarrow \gamma X(3872)$

$e^+e^- \rightarrow \omega X(3872)$

 $e^+e^- \rightarrow \omega X(3872)$

PRL 130, 151904 (2023)

 $e^+e^- \rightarrow \omega X(3872)$

PRL 130, 151904 (2023)

- Events accumulation in X(3872) signal regions
- Observed 24.6±5.4 signals with 7.8σ significance
- The cross section of $e^+e^- \rightarrow \omega X(3872)$ at each energy point is measured
 - Line shape indicates nontrivial structures

 $e^+e^- \rightarrow X(3872)$

• Direct formation of C-even states with two-photon fusion process

• BESIII observed $e^+e^- \rightarrow \chi_{c1}(1P)$ with 5.1 σ significance

 $e^+e^- \rightarrow X(3872)$

PRD 107, 032007 (2023)

• Direct formation of C-even states with two-photon fusion process

• Search for $e^+e^- \rightarrow X(3872)$

 $\Gamma_{ee} \times \mathcal{B}(X(3872) \to \pi^+ \pi^- J/\psi) < 7.5 \times 10^{-3} \,\mathrm{eV}$

X(3872) Decays

Chunhua Li & CZY, PRD 100, 094003 (2019)

Index (i)	Parameters	Values	Experiments
	$X(3872) \rightarrow \pi^+\pi^- J/\psi$	(×10 ⁻⁶)	
1 2 3 4	$B^+ \to X(3872)K^+$ $B^0 \to X(3872)K^0$	$\begin{array}{c} 8.61 \pm 0.82 \pm 0.52 \\ 8.4 \pm 1.5 \pm 0.7 \\ 4.3 \pm 1.2 \pm 0.4 \\ 3.5 \pm 1.9 \pm 0.4 \end{array}$	Belle [14] BABAR [15] Belle [14] BABAR [15]
5 6 7 8	$X(3872) \rightarrow \gamma J/\psi$ $B^+ \rightarrow X(3872)K^+$ $B^0 \rightarrow X(3872)K^0$	$\begin{array}{c} (\times 10^{-6}) \\ 1.78^{+0.48}_{-0.44} \pm 0.12 \\ 2.8 \pm 0.8 \pm 0.1 \\ 1.24^{+0.76}_{-0.61} \pm 0.11 \\ 2.6 \pm 1.8 \pm 0.2 \end{array}$	Belle [22] BABAR [23] Belle [22] BABAR [23]
9 10 11 12	$X(3872) \rightarrow \gamma \psi(3686)$ $B^+ \rightarrow X(3872)K^+$ $B^0 \rightarrow X(3872)K^0$	$\begin{array}{c} (\times 10^{-6}) \\ 0.83^{+1.98}_{-1.83} \pm 0.44 \\ 9.5 \pm 2.7 \pm 0.6 \\ 1.12^{+3.57}_{-2.90} \pm 0.57 \\ 11.4 \pm 5.5 \pm 1.0 \end{array}$	Belle [22] BABAR [23] Belle [22] BABAR [23]
	$X(3872) \to D^{*0}\bar{D}^0$	(×10 ⁻⁴)	
13 14 15 16	+c.c. $B^+ \rightarrow X(3872)K^+$ $B^0 \rightarrow X(3872)K^0$	$\begin{array}{c} 0.77 {\pm} 0.16 {\pm} 0.10 \\ 1.67 {\pm} 0.36 {\pm} 0.47 \\ 0.97 {\pm} 0.46 {\pm} 0.13 \\ 2.22 {\pm} 1.05 {\pm} 0.42 \end{array}$	Belle [16] BABAR [17] Belle [16] BABAR [17]
17 18	$X(3872) \rightarrow \omega J/\psi$ $B^+ \rightarrow X(3872)K^+$ $B^0 \rightarrow X(3872)K^0$	$(\times 10^{-6})$ $6\pm 2\pm 1$ $6\pm 3\pm 1$	BABAR [18] BABAR [18]
19	Ratios $\mathcal{B}(X(3872) \rightarrow \gamma J/\psi)$	0.79 ± 0.28	BESIII [19]
20	$\frac{\mathcal{B}(X(3872) \to \pi^+ \pi^- J/\psi)}{\mathcal{B}(X(3872) \to D^{*0} \bar{D}^0 + \text{c.c.})}$	14.81±3.80	BESIII [19]
21	$\frac{\mathcal{B}(X(3872) \rightarrow \omega J/\psi)}{\mathcal{B}(X(3872) \rightarrow \pi^{+}\pi^{-}J/\psi)}$	$1.6^{+0.4}_{-0.3}\pm0.2$	BESIII [20]
22	$\frac{\mathcal{B}(X(3872) \to \pi^0 \chi_{c1})}{\mathcal{B}(X(3872) \to \pi^+ \pi^- J/\psi)}$	$0.88^{+0.33}_{-0.27}\pm0.10$	BESIII [21]
23	$\frac{\mathcal{B}(X(3872) \rightarrow \gamma \psi(3686))}{\mathcal{B}(X(3872) \rightarrow \gamma J/\psi)}$	$2.46 {\pm} 0.64 {\pm} 0.29$	LHCb [24]
24 25	$B^+ \to X(3872)K^+$	$(\times 10^{-4})$ 2.1±0.6±0.3 1.2±1.1±0.1	BABAR [27] Belle [26]

• Determination of X(3872) absolute branching fractions by globally analyzing all experimental measurements

Parameter i	index Decay mode	Branching fraction
1	$X(3872) \to \pi^+\pi^- J_A$	$/\psi = (4.1^{+1.9}_{-1.1})\%$
2	$X(3872) \to D^{*0}\bar{D}^0$	$+ c.c. (52.4^{+25.3}_{-14.3})\%$
3	$X(3872) \rightarrow \gamma J/\psi$	$(1.1^{+0.6}_{-0.3})\%$
4	$X(3872) \rightarrow \gamma \psi(3680)$	$6) \qquad (2.4^{+1.3}_{-0.8})\%$
5	$X(3872) \to \pi^0 \chi_{c1}$	$(3.6^{+2.2}_{-1.6})\%$
6	$X(3872) \rightarrow \omega J/\psi$	$(4.4^{+2.3}_{-1.3})\%$
7	$B^+ \to X(3872)K^+$	$(1.9 \pm 0.6) \times 10^{-4}$
8	$B^0 \to X(3872)K^0$	$(1.1^{+0.5}_{-0.4}) \times 10^{-4}$
	$X(3872) \rightarrow \text{unknow}$	$n (31.9^{+18.1}_{-31.5})\%$

X(3872) Decays at BESIII

Search for X(3872) $\rightarrow \pi^0 \chi_{c0}, \pi \pi \chi_{c0}$

PRD 105, 072009 (2022)

Theoretical predictions	[PRD 77,	014013	(2008))
-------------------------	----------	--------	--------	---

Interpretation	$\frac{\mathcal{B}(X(3872) \to \pi^0 \chi_{c0})}{\mathcal{B}(X(3872) \to \pi^+ \pi^- J/\psi)}$	$\frac{\mathcal{B}(X(3872) \rightarrow \pi^0 \chi_{c0})}{\mathcal{B}(X(3872) \rightarrow \pi^0 \chi_{c1})}$
Four-quark/molecule	NA	2.97
$\chi_{c1}(2P)$	0.0	0.0

EFT predictions [PRD 79, 094013 (2009), PRD 78, 094019 (2008)] $\frac{\mathcal{B}(X(3872) \rightarrow \pi \pi \chi_{c0})}{\mathcal{B}(X(3872) \rightarrow \pi^0 \chi_{c0})} \approx \mathcal{O}(10^{-3}) \text{ or } \mathcal{O}(10^{-5})$

• Search for X(3872) $\rightarrow \pi^0 \chi_{c0}$ with 9.9fb⁻¹ between 4.15-4.30 GeV

$$\frac{\mathcal{B}(X(3872) \to \pi^{0} \chi_{c0})}{\mathcal{B}(X(3872) \to \pi^{+} \pi^{-} J/\psi)} < 3.6$$

$$\frac{\mathcal{B}(X(3872) \to \pi^{0} \chi_{c0})}{\mathcal{B}(X(3872) \to \pi^{0} \chi_{c1})} < 4.5$$

$$\frac{\mathcal{B}(X(3872) \to \pi^{0} \chi_{c0})}{\mathcal{B}(X(3872) \to \pi^{+} \pi^{-} J/\psi)} < 1.7$$

$$\frac{\mathcal{B}(X(3872) \to \pi^{+} \pi^{-} \chi_{c0})}{\mathcal{B}(X(3872) \to \pi^{+} \pi^{-} J/\psi)} < 0.56$$

Mass $(\pi^+\pi^-\chi_{0})$ [GeV/c²]

75 3.80 3.85 3.90 3.95 4.0(Mass(π⁺π χ_{c0}) [GeV/c²]

A coupled channel analysis of the X(3872) line shape at BESIII

Line shape parameterization

 $\frac{d\mathrm{Br}(D^0\overline{D}^0\pi^0)}{dE} = B\frac{1}{2\pi} \times \frac{g * k_{\mathrm{eff}}(E)}{|D(E)|^2} \times \mathrm{Br}(D^{*0} \to D^0\pi^0)$ $\frac{d\mathrm{Br}(\pi^+\pi^- J/\psi)}{dE} = B \frac{1}{2\pi} \times \frac{\Gamma_{\pi^+\pi^-} J/\psi}{|D(E)|^2}$ $D(E) = E - \frac{E_X}{2} + \frac{1}{2}g * \left(\kappa_{\text{eff}}(E) + ik_{\text{eff}}(E) + \kappa_{\text{eff}}^c(E) + ik_{\text{eff}}^c(E)\right) + \frac{i}{2}\Gamma_0$ $k_{\rm eff}(E) = \sqrt{\mu_p} \sqrt{\sqrt{(E - E_R)^2 + \Gamma^2/4}} + E - E_R$ $\kappa_{\rm eff}(E) = -\sqrt{\mu_p} \sqrt{\sqrt{(E - E_R)^2 + \Gamma^2/4}} - E + E_R$ $+\sqrt{\mu_p}\sqrt{(E_X-E_R)^2+\Gamma_X^2/4}-E_X+E_R$ $\Gamma_0 = \Gamma_{\pi^+\pi^- I/\psi} + \Gamma_{known} + \Gamma_{unknown}$ $E_{X} = M_{X} - (m_{D^{0}} + m_{\overline{D}^{0}} + m_{\pi^{0}})$ **B**: the global normalization

* superscript c: charged $D^{*+}D^{-}$

* Due to the limited statistics, $\Gamma_{unknown}/\Gamma_{\pi^+\pi^- J/\psi}$ is fixed [Chunhua Li, Chang-Zheng Yuan, PRD 100, 094003 (2019)] **BESIII** Preliminary

Key features:

- Model independent
- Including the $D^*\overline{D}$ self energy terms
- Including the width of *D**
- Including the coupled channel effect
- Fit parameters: g, $\Gamma_{\pi^+\pi^- J/\psi}$, M_X

A coupled channel analysis of the X(3872) line shape at BESIII

BESIII Preliminary

Fit results

Parameters	g	$\Gamma_0 ({\rm MeV})$	M_X (MeV)
Fit results	0.16 ± 0.10	2.67 ± 1.77	3871.63 ± 0.13
g	1.00	0.89	-0.60
Γ_0		1.00	-0.29
M_X			1.00

 $\mu_{X(3872)}^{prod} = (9.8 \pm 3.9) \times 10^4$ Large systematic uncertainty from $\Gamma_{unknow}/\Gamma_{\pi^+\pi^-J/\psi}$

Y States

PTEP 2022, 083C01 (2022)

Y States

Y States

- Measure the √s-dependent cross section of exclusive processes with high precision.
- Model the line shape of cross section with a coherent sum of multiple Breit-Wigner functions together with the continuum and near threshold components.

$$\sigma^{\text{dressed}}(\sqrt{s}) = \left| \sum_{k} e^{i\phi_{k}} \cdot BW_{k}(s) + e^{i\phi_{\text{cont}}} \cdot \psi_{\text{cont}} \right|^{2},$$

$$BW_k(s) = \frac{M_k}{\sqrt{s}} \frac{\sqrt{12\pi\Gamma_k^{\text{tot}}\Gamma_k^{ee}B_k}}{s - M_k^2 + iM_k\Gamma_k^{\text{tot}}} \sqrt{\frac{\Phi(\sqrt{s})}{\Phi(M_k)}},$$

• Fit gives multiple solutions with different magnitudes but the same mass and width for a resonance.

 $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

- First vector charmonium-like state Y(4260) was observed by BaBar in 2005.
- Fine structure around 4.26 GeV appear precise measurement in 2017, Y(4260)→ Y(4230)+Y(4320)
- Update measurement with more datasets in 2022 confirm the fine structure.

Named as ψ(4230) in PDG, also known as Y(4220), Y(4260)

$e^+e^- \rightarrow \pi^+\pi^-h_c(1P), \pi^+\pi^-\psi(2S)$

- Precisely determine the line shape of e⁺e⁻→π⁺π⁻h_c cross section, benefit from both the unique datasets and excellent reconstruction of h_c at BESIII.
- π+π-ψ(2S) line shape confirms the ψ(4390) announced in π+π-h_c. Also clear ψ(4660)→ π+π-ψ(2S)
- ψ(4230)→π+π-h_c and π+π-ψ(2S)

$e^+e^- \rightarrow K^+K^-J/\psi$, KsKs J/ ψ

- Observations of $\psi(4230) \rightarrow K^+K^-J/\Psi$, KsKs J/ ψ
- Two new structures $\psi(4500)$ and $\psi(4710)$ are needed to describe the line shape.

CPC 46,111002 (2022)

$e^+e^- \rightarrow \pi^+\pi^-\psi_2(3823), \pi^0\pi^0\psi_2(3823)$

• Observation of $e^+e^- \rightarrow \pi^0 \pi^0 \psi_2(3823)$

$$\frac{\sigma[e^+e^- \to \pi^0 \pi^0 \psi_2(3823)]}{\sigma[e^+e^- \to \pi^+ \pi^- \psi_2(3823)]} = 0.57 \pm 0.14 \pm 0.05$$

Consistent with the isospin symmetry

- Update the measurement of $e^+e^- \rightarrow \pi^+\pi^-\psi_2(3823)$
 - More datasets
 - Partial reconstruction to improve the reconstruction efficiency
- First observation of vector Y-states coupling to D-wave charmonium state

27

$e^+e^- \rightarrow \gamma \phi J/\psi$

JHEP 01, 132 (2023)

- Why is $e^+e^- \rightarrow \gamma \phi J/\psi$
 - Search for hadronic decay $e+e-\rightarrow\phi\chi_{c1,2}\rightarrow\phi[\gamma J/\psi]$
 - LHCb reports X(4140)/X(4274)/X(4500)/
 X(4700)→φJ/ψ in the full amplitude analysis of B+→φJ/ψK+
- Measurements of $e+e-\rightarrow\phi\chi_{c1,2}$

$e^+e^- \rightarrow \gamma \phi J/\psi$

JHEP 01, 132 (2023)

- Search for e+e- $\rightarrow \gamma X(4140)/X(4274)/X(4500) \rightarrow \gamma \phi J/\psi$
 - $e^+e^- \rightarrow \gamma \phi J/\psi$ signals are from $e^+e^- \rightarrow \phi \chi_{c1,2}$
 - No significant $e+e-\rightarrow \gamma X \rightarrow \gamma \phi J/\psi$ signals

e+e-→open charm at BESIII

e⁺e[−]→open charm at BESIII

Zcs(3985)

PRL 126,102001 (2021)

$$e^+e^- \to K^+(D_s^-D^{*0} + D_s^{*-}D^0)$$

 $Z_{cs}(3985)$

5.3σ significance

 $M = (3982.5^{+1.8}_{-2.6} \pm 2.1) \text{ MeV}/c^2$ $\Gamma = (12.8^{+5.3}_{-4.4} \pm 3.0) \text{ MeV}$

$Z_{cs}(3985)^0$

PRL 129, 112003 (2022)

$$e^+e^- \to K_S(D_s^-D^{*+} + D_s^{*-}D^+)$$

- 4.6σ significance
- Isospin partner of Z_{cs}(3985)

 $M = (3992.2 \pm 1.7 \pm 1.6) \text{ MeV/c}^2$ $\Gamma = (7.7^{+4.1}_{-3.8} \pm 4.3) \text{ MeV}$

Search for Z'cs

CPC 47, 033001 (2023)

$$Z'_{cs}$$
 in $e^+e^- \to K^+(D_s^{*-}D^{*0})$

 2.1σ significance

 $M = (4123.5 \pm 0.7_{stat.} \pm 4.7_{syst.}) MeV/c^2$

Summary

- BESIII keeps making contributions to the XYZ physics
 - Investigate the X(3872) in productions, decays and line shape.
 - Vector Y states
 - A series of \sqrt{s} -dependent cross sections of exclusive processes are measured with high precision using the BESIII unique XYZ data.
 - A series of vector resonances are reported.
 - Global analysis of these measurements is essential to explore the correlation between these structures.
 - Observations of the tetraquark states with strangeness.
- BEPCII Upgrade (BEPCII-U) in 2024
 - Beam energy up to 2.8 GeV
 - 3x BEPCII luminosity above 4 GeV

