11th International Workshop on Charm Physics – CHARM 2023

Performance of LHCb Upgrade I in Run 3

Giulia Tuci, on behalf of the LHCb collaboration Rupert Karls Universitaet Heidelberg giulia.tuci@cern.ch

Siegen, 20/07/2023

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Introduction

- LHCb Run 1 and Run 2: huge success!
- Non-exhaustive selection of charm highlights:
 - ► First observation of CPV in charm decays PRL 122 (2019) 211803
 - Observation of the mass difference between neutral charm-meson eigenstates
 PRL 127(2021)111801
 - Evidence of CPV in a single channel arXiv:2209.03179
- The majority of measurements is statistically limited
 - \rightarrow LHCb Upgrade I: 5x instantaneous luminosity
- Improve physics performance, despite the more challenging environment
 - Completely new tracking and trigger system

LHCb Upgrade I detector

Tracking detectors: VELO

- Charm and beauty hadrons:
 - ➤ τ~ O(0.1-1 ps)
 - Can flight several mm before decaying: distinctive feature to select them
- High resolution vertex detector
 - > Silicon pixels \rightarrow single hit resolution 12-15 µm

Giulia Tuci, 20/07/2023

Tracking detectors: VELO (2)

- VELO is separated from the primary vacuum by the 1.1m long thin walled "RF box"
- 3.5 mm clearance from the beam and 900 µm clearance from the sensors
- \rightarrow aperture is so small that during LHC injection
 the VELO halves and boxes must be retracted

Giulia Tuci, 20/07/2023

Tracking detectors: SciFi

- Single hit resolution better than
 100 µm
- Single hit efficiency of 99%
- Light detector, to limit multiple scattering
- Radiation hardness: the tracker
 should operate at the desired
 performance over the lifetime
 - of the experiment
- $\ \, \bullet \ \, \mathsf{Scintillating Fibre Tracker!}$

Trigger system

- Trigger strategy in Run 1 + Run 2:
 - Hardware trigger (L0), followed by a software trigger
- ✤ Instantaneous luminosity will reach 2 x 10³³ cm⁻²s⁻¹
 - > Tight p_{T} and E_{T} cuts saturate hadronic channels \rightarrow L0 trigger removed
 - Software trigger process events at the full LHC collision rate

Data flow

LHCb-FIGURE-2020-016

New trigger system: implications for charm decays

- 1) Charge asymmetries
 - > L0 trigger for hadrons in Run 2: information from the calorimeter
 - Calorimeter is quite coarse: many particles fall in the same cell
 - Cannot combine efficiencies for single tracks to determine efficiency of a decay
 - > Difficult to evaluate trigger induced asymmetries in CPV measurements
 - > Not a problem anymore in Run 3: L0 trigger removed

New trigger system: implications for charm decays

- ✤ 2) Greater flexibility in design of selections
 - \succ D⁰ and K_s⁰ candidates reconstructed directly at the first level of the trigger!
 - \rightarrow room for improving trigger efficiency w.r.t. Run 2

LHCb-FIGURE-2023-009

LHCb-FIGURE-2023-005

Mass peaks in 2022 data

Mass resolution compatible with MC expectations within 1 MeV

LHCb-FIGURE-2023-011

2023 - Vacuum incident

- 10 Jan 2023: loss of the protection system *
 - pressure differential of 200 mbar between the secondary VELO vacuum and the \succ LHC one (max design pressure 10mbar)
- Tomography to check the sensor status and the shape of RF box *
 - No damage to VELO sensors \succ
 - But VELO cannot be fully closed to the nominal \succ

3 mm position around the beam due to a plastic

deformation of the boxes of about 17mm

RF box will be replaced during YETS 2023/2024 \succ

Microchannels seen with tomography of the modules

Physics opportunities in 2023 (before 17.07.23)

- VELO partially open during 2023 data taking (24.5 mm per side)
- LHCb physics program affected, but still many opportunities
- Reconstruction of K_s⁰ and Λ⁰ not affected by open VELO
- Dedicated HLT1 selections to collect
 single K_s⁰ and pairs of K_s⁰
 - > x2.6 efficiency on $D^0 \rightarrow K_s^0 K_s^0$ decays

(see LLP workshop 2022)

LHCb-FIGURE-2023-005

Current status

LHC Page1	Fill: 9075	E:	0 Ge	v			18	3 -07-23 1	L6:58:46
	PROTON	PHYSI	CS:	NO	BEA	M			
				BIS sta	tus and S	5MP flags		B1	B2
Comments (17-Ju	ul-2023 18:57:49)		L	ink Statu	s of Beam P	ermits	true	true
F	Problem with IT.L8			Global Beam Permit			false	false	
leak ir	n the insulation v	acuum		Setup Beam				false	false
No boom	until further notic	ce (weeks)			Bea	m Presence		false	false
No beam				Moveable Devices Allowed In		false	false		
					Sta	ble Beams		false	false
AFS: 25ns_2464b_	2452_1842_1821_2	36bpi_12inj_	hybrid	PM Stat	tus B1	ENABLED	PM Statu	s B2 El	NABLED

Conclusions

- A huge amount of work has been done to finalize the commissioning of our brand new detector
- Cannot promise anything today for 2023 data-taking, but we are making our best in the conditions which are given

Backup slides

Prospects

Future prospects (only $D^0 \rightarrow K_s^0 \pi^+ \pi^-$)

Sample (lumi \mathcal{L})	Tag	$\sigma(q/p)$	$\sigma(\phi)$
$P_{uv} = 1 + 2 (92 \text{ fb} - 1)$	\mathbf{SL}	0.036	2.5°
$\operatorname{Rull} 1-3 (23 10^{-1})$	Prompt	0.017	0.77°
$P_{uu} = 1 + (50 \text{ fb}^{-1})$	\mathbf{SL}	0.024	1.7°
1-4(5010)	Prompt	0.011	0.48°
$P_{uv} = 1 = 5 (200 \text{ fb} - 1)$	\mathbf{SL}	0.009	0.69°
$\pi u = 1 - 3 (300 \text{ m}^{-1})$	Prompt	0.004	0.18°

Physics case for an LHCb Upgrade II