Charm at BESIII

Wolfgang Gradl

on behalf of the BESIII collaboration

22nd June 2023

IG U

ARDBEG

PRISMA

BEPCII and **BESIII**

BEPCII storage rings: a au-charm factory

Upgrade of BEPC (started 2004, first collisions July 2008) Beam energy 1...2.45 GeV Optimum energy 1.89 GeV Single beam current 0.91 A Crossing angle

Design luminosity 10^{33} cm⁻²s⁻¹ Achieved 1×10^{33} cm⁻²s⁻¹ Beam energy measurement: Laser Compton backscattering $\Delta E/E \approx 5 \times 10^{-5}$ (≈ 50 keV at τ threshhold)

BESIII

At BEPCII in Beijing: e^+e^- collisions at \sqrt{s} between 2 and 5 GeV

12 years data taking at BESIII

Data sets collected so far include

- $10 \times 10^9 J/\psi$ events
- $2.7 \times 10^9 \psi'$ events
- $12 \, \text{fb}^{-1}$ on $\psi(3770)$
- scan data between
 2.0 and 3.08 GeV,
 and above 3.735 GeV
- large datasets for XYZ studies: scan with > 500 pb⁻¹ per energy point spaced 10 - 20 MeV apart 14.8 fb⁻¹ in large datasets above 3.8 GeV

Charm production at **BESIII**

$\sqrt{s}[\text{GeV}]$	$\mathcal{L}_{int}[pb^{-1}]$	decay chain
3.773	2930	${ m e^+e^-} ightarrow \psi(3770) ightarrow Dar{D}$
	9000	(2021–2023)
4.178	3189	
4.189	526.7	
4.199	526.0	${ m e^+e^-} ightarrow D_s^*D_s$
4.209	517.1	6 fb $^{-1}$ in total
4.219	514.6	
4.226	1047	
4.6	567	$a^+a^- \rightarrow A^+\overline{A}^-$
> 4.6	5700	$e^+e^- \rightarrow \Lambda_c^+ \Lambda_c^-$

CLEO, PRD 80 (2009) 072001

- D \overline{D} pairs from $\psi(3770)$ +9 fb⁻¹ taken in 2021–23. Goal is 20 fb⁻¹ by 2024.
- $D_s^+ D_s^-$ pairs near threshold, but
- $D_s^+ D_s^{*-}$ ($\rightarrow D_s^- \gamma$ or $D_s^- \pi^0$) has much higher cross section
- $\Lambda_c^+ \overline{\Lambda}_c^-$ cross section flat near threshold

Leptonic D decays

Leptonic decays of charmed mesons

to leading order, neglecting radiative corrections

$$D_q$$
: charged, charmed meson, *i.e.* D^+ $(c\overline{d})$ or D_s^+ $(c\overline{s})$

Cł

Leptonic decays of charmed mesons

2

$$\Gamma(D_{q}^{+} \to \ell^{+} \nu_{\ell}) = \frac{G_{F}^{2}}{8\pi} f_{D_{q}}^{2} |V_{cq}|^{2} m_{\ell}^{2} m_{D_{q}} \left(1 - \frac{m_{\ell}^{2}}{m_{D_{q}}^{2}}\right)$$

Precise measurement of
$$f_{D_q}^2 |V_{cq}|^2$$
 allows determination of $f_{D_q}^2$, using global value for $|V_{cq}|^2$
 $|V_{cq}|^2$, using lattice QCD result for f_{D_q}

charged lepton must have 'wrong' helicity for its chirality: decay rate suppressed with m_ℓ^2 e.g. for $D^+ \rightarrow \ell \nu$, SM predicts ratio of rates $e: \mu: \tau = 2.35 \times 10^{-5}: 1: 2.67$

Charm at BESIII | W. Gradl | 12

Analysis principle: Double tag analysis

- Final state of signal decay: lepton (+ hadrons) + missing energy / momentum
- Difficulty: identify signal decay and separate it from background
- e⁺e⁻ at D⁺D⁻ threshold: clean environment, no extra particles, closed kinematics
- Reconstruct one D⁺ in the event (D_{tag}): know kinematics of the other D[±]
- Infer four-momentum of undetected neutrino:

$$e^+$$

$$\mathsf{p}^{\mu}_{\mathsf{miss}} = \mathsf{p}^{\mu}_{e^+e^-} - \mathsf{p}^{\mu}_{\mathsf{D}_{\mathsf{tag}}} - \mathsf{p}^{\mu}_{\ell}$$

Double-tag candidate in BESIII

Single tag selection

- Single hadronic decay modes of D mesons have appreciable branching fraction can use $\sim 25\%$ of the total D width for tagging
- Kinematic variables for **tag-side** selection:

$$\Delta E = E_D^* - E_{
m beam}^*$$
 $m_{
m BC} = \sqrt{E_{
m beam}^2 - ec{p}_{
m tag}^2}$

Typically, select candidates in ΔE , use m_{BC} spectrum to count ST events and to perform final ST selection

Single-tag data samples:

E _{cm} [GeV]	\mathcal{L} [fb $^{-1}$]	D ⁰ yield	D^+ yield	D_s^+ yield
3.773	2.93	$2.7 imes10^{6}$	$1.7 imes10^{6}$	2
4.009	0.48			13×10^{3}
4.13 – 4.23	7.33			$0.8 imes10^6$

Charm at BESIII | W. Gradl | 15

Double tag selection

Signal side selection ('double tag'):

look in events with ST candidates for signature of signal decay

- Reject combinations with extra tracks
- Veto combinations with too much extra activity in calorimeter (E_{extra})
- Apply criteria to further reject background based on detailed MC studies

 $D^+
ightarrow \ell^+ \nu$

$$\mathsf{D}^+ o \mu^+ \nu_\mu$$

BESIII, Phys. Rev. D 89 (2014) 051104

$$\mathsf{D}^+
ightarrow au^+
u_{ au}$$

$$\begin{split} \mathcal{B}(D^+ \to \tau^+ \nu_\tau) &= \left(1.20 \pm 0.24_{\text{stat}} \pm 0.12_{\text{syst}}\right) \times 10^{-3} \\ f_{D^+} |V_{cd}| &= 50.4 \pm 5.1 \pm 2.5 \text{ MeV} \end{split}$$

 $\frac{\text{Precision} \approx 11\%}{\text{First observation}}$

$$D_s^+ o \mu^+
u_\mu$$

$$\begin{split} \mathcal{B}(D_s^+ \to \mu^+ \nu_\mu) &= (5.49 \pm 0.16 \pm 0.15) \times 10^{-3} \\ f_{D^+} |V_{cs}| &= 246.2 \pm 3.6 \pm 3.5 \text{ MeV} \end{split}$$

using μ ID in the MUC superseded by result shown on right

$$\begin{split} \mathcal{B}(D_s^+ \to \mu^+ \nu_\mu) &= (5.35 \pm 0.13 \pm 0.16) \times 10^{-3} \\ f_{D_s^+} |V_{cs}| &= 243.1 \pm 3.0 \pm 3.7 \; \text{MeV} \end{split}$$

no MUC requirements; $\approx 50\%$ overlap in event sample, but different analysis, different systematic uncertainties

Charm at BESIII | W. Gradl | 18

 $D_s^+ \to \tau^+ \nu_{\tau}$

 $\mathcal{B}(D_s^+ \to \tau^+ \nu) = (5.29 \pm 0.25 \pm 0.20) \times 10^{-2} \qquad (5.21 \pm 0.25 \pm 0.17) \times 10^{-2} \qquad (5.27 \pm 0.10 \pm 0.12) \times 10^{-2} \\ f_{D_s^+} |V_{cs}| = 244.8 \pm 5.8 \pm 4.8 \text{ MeV} \qquad 243.0 \pm 5.8 \pm 4.0 \text{ MeV} \qquad 244.4 \pm 2.3 \pm 2.9 \text{ MeV}$

Same dataset, but different τ^+ decay modes: independent results, excellent compatibility. Precision $\approx 1.5\%$ Charm at BESII | W. Grad | 19

D and D_s Decay constants

Take $|V_{cd(s)}|$ from global fits to CKM matrix, determine $f_{D^+_{(s)}}$

CLEO	PRD79(2009)052001, μν	256.7±10.2±4.0	F===
BaBar	PRD82(2010)091103, μν	264.9±8.4±7.6	H===
Belle	JHEP09(2013)139, μν	248.8±6.6±4.8	H==
BESIII 3.19 fb ⁻¹	PRL1422(2019)071802, μν	253.0±3.7±3.6	H==
BESIII 6.32 fb ⁻¹	PRD104(2021)052009, μν	249.8±3.0±3.9	H==
BESIII 6.32 fb ⁻¹	PRD104(2021)052009, τ _α ν	249.7±6.0±4.2	H==
BESIII 6.32 fb ⁻¹	PRD104(2021)032001, τ _α ν	251.6±5.9±4.9	H==
BESHI 6.32 fb ⁻¹	PRL127(2021)171801, $\tau_e v$	251.1±2.4±3.0	Hell
BESHI 7.33 fb ⁻¹	arXiv:2303.12600 [hep-ex], $\tau_{\pi} v$	254.3±4.0±3.3	Hell
BESHI 7.33 fb ⁻¹	this work $\tau_{\mu} v$	252.7±3.8±2.6	Hell
BESHI	τv	252.1±1.7±2.0	Combined

Semileptonic D decays

Semileptonic decays: form factors

For decay into one pseudoscalar *P*, one extra degree of freedom: form factor $f^{P}_{+}(q^{2})$, function of four-momentum transfer $q \equiv p_{D} - p_{P}$

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} = \frac{G_F^2}{24\pi^3} |\vec{p}_P|^3 |V_{cq}|^2 |f_+^P(q^2)|^2$$

Charm at BESIII | W. Gradl | 22

Decay dynamics for $D^0
ightarrow K^- e^+
u_e$

 $\begin{aligned} f_{+}^{K}(0)|V_{cs}| &= 0.7172 \pm 0.0025 \pm 0.0035 \\ f_{+}^{K}(0) &= 0.7368 \pm 0.0026 \pm 0.0036 \\ |V_{cs}| &= 0.9601 \pm 0.0033 \pm 0.0047 \pm 0.0239 \end{aligned} \qquad \text{using LQCD and LCSR for } f_{+}^{K}(0) \end{aligned}$

Branching fractions for $D \to \bar{K} e \nu$

New approach: $D \to \overline{K}e^+\nu_e$ and $\overline{D} \to Ke^-\overline{\nu}_e$ in the same event largest semi-leptonic branching fraction, clear experimental signature

Advantage: statistically independent from hadronic tags, no dependence on hadronic BFs, absolute measurement of \mathcal{B} possible *Disadvantage*: no access to form factor

$$\mathcal{B}(D
ightarrow ar{K} e^+
u_e) = \sqrt{rac{N_{
m DT}}{N_{Dar{D}} \cdot arepsilon_{
m DT}}}$$

Produced $D\overline{D}$ pairs in 2.93 fb⁻¹ data at $\psi(3770)$:

$$\begin{split} N_{D^0\bar{D}^0} &= (10\,597\pm28\pm98)\times10^3\\ N_{D^+D^-} &= (8296\pm31\pm65)\times10^3 \end{split}$$

$D \rightarrow Ke \nu$ results

$$\begin{split} \mathcal{B}(D^0 \to K^- e^+ \nu_e) &= (3.567 \pm 0.031 \pm 0.021) \times 10^{-2} \\ \mathcal{B}(D^+ \to \bar{K}^0 e^+ \nu_e) &= (8.68 \pm 0.14 \pm 0.16) \times 10^{-2} \end{split}$$

$$\frac{\Gamma(D^0 \to K^- e^+ \nu_e)}{\Gamma(D^+ \to \bar{K}^0 e^+ \nu_e)} = 1.039 \pm 0.021 \quad \text{supports isospin symmetry within } 1.9\sigma$$

Charm at BESIII | W. Gradl | 25

Other $c \rightarrow s\ell^+\nu$ SL decays with pseudoscalars

Phys. Rev. D 92(2015)072012

 $f_{\perp}^{1.6} \xrightarrow{D^{+} K^{0} e^{+} v}_{\text{Bigle Pole Model}} \xrightarrow{D^{+} K^{0} e^{+} v}_{\text{Bigle Pole Model}}$

Phys. Rev. D 96(2017)012002

Phys. Rev. D 92(2017)112008

Phys. Rev. Lett. 122(2019)121801

 $D_{s}^{+} \rightarrow Xe^{+}\nu_{e}$

Mode	Averaged ${\cal B}$
$D_s^+ o \phi e^+ u_e$	$(2.37 \pm 0.11)\%$
$D_s^+ o \eta e^+ u_e$	$(2.32 \pm 0.08)\%$
$D_s^+ o \eta' { m e}^+ u_e$	$(0.80 \pm 0.07)\%$
$D_s^+ ightarrow K^0 \mathrm{e}^+ u_\mathrm{e}$	$(0.34 \pm 0.04)\%$
$D_s^+ ightarrow K^* (892)^0 e^+ u_e$	$(0.21 \pm 0.03)\%$
$D_{s}^{+} \rightarrow f_{0}(980) \mathrm{e}^{+} \nu_{e}, \ f_{0}(980) \rightarrow \pi \pi$	$(0.30\pm 0.05)\%$
Sum of Semielectronic Modes	$(6.34 \pm 0.17)\%$
$\mathcal{B}\left(D_{s}^{+} ightarrow Xe^{+} \nu_{e} ight)$ [CLEO]	$(6.5 \pm 0.4)\%$
$D_s^+ ightarrow au^+ u_ au ightarrow { m e}^+ \overline{ u}_ au u_e u_ au$	$(0.96 \pm 0.04)\%$

Are there unobserved semi-electronic D_s^+ decays?

Single tags using $D_s^- \rightarrow K^+ K^- \pi^-$ only: sufficient statistics, well-known backgrounds

Signal-side: require electron candidate with $p_e > 200 \, \text{MeV}$

Analysis requires very careful modelling of PID efficiencies and mis-ID rates

 $D_{c}^{+} \rightarrow Xe^{+}\nu_{e}$

Mode	Averaged ${\cal B}$	Momentum spectrum of decay electrons
$\begin{array}{c} D_s^+ \rightarrow \phi e^+ \nu_e \\ D_s^+ \rightarrow \eta e^+ \nu_e \\ D_s^+ \rightarrow \eta' e^+ \nu_e \\ D_s^+ \rightarrow K^0 e^+ \nu_e \\ D_s^+ \rightarrow K^* (892)^0 e^+ \nu_e \\ D_s^+ \rightarrow f_0 (980) e^+ \nu_e, f_0 (980) \rightarrow \pi\pi \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1800 1600 1400 1200 1200 1000
Sum of Semielectronic Modes	$(6.34 \pm 0.17)\%$	
$\mathcal{B}\left(\mathcal{D}_{s}^{+} ightarrow Xe^{+} u_{e} ight)$ [CLEO]	$(6.5 \pm 0.4)\%$	
$D_s^+ ightarrow au^+ u_ au ightarrow e^+ \overline{ u}_ au u_e u_ au$	$ (0.96 \pm 0.04)\%$	ο 200 400 600 800 1000 120 ρ (MeV/ <i>c</i>)

Are there unobserved semi-electronic D_s^+ decays?

extrapolating to $p_e < 200$ MeV introduces model dependence, 0.7% relative syst. uncertainty

 $\mathcal{B}(D_s^+ \to X e^+ \nu_e) = (6.30 \pm 0.13 \text{ (stat.)} \pm 0.10 \text{ (syst.)})\%$

saturated by sum of exclusive channels

Form factors for SL decays, $f_{+}^{K/\pi}(0)$

Take $|V_{cd(s)}|$ from global fits to CKM matrix, determine $f_+(0)$

CKM matrix elements V_{cd} and V_{cs}

Tests of lepton flavour universality (LFU)

Ratio of decay widths to different lepton flavours:

2

$$R_{\ell/\ell'} \equiv \frac{\Gamma(D^+ \to \ell^+ \nu)}{\Gamma(D^+ \to \ell'^+ \nu)} = \frac{m_{\ell}^2 m_{D^+} \left(1 - \frac{m_{\ell}^2}{m_{D^+}^2}\right)^2}{m_{\ell'}^2 m_{D^+} \left(1 - \frac{m_{\ell'}^2}{m_{D^+}^2}\right)^2}$$

in the SM, coupling of W^{\pm} to leptons universal *R* depends only on masses of leptons and charmed meson

very precise prediction

similar relations for semi-leptonic decays

Charm at BESIII | W. Gradl | 30

Tests of lepton flavour universality (LFU)

Deviations from SM prediction: charged intermediate boson coupling differently to leptons of different flavour, *e.g.* leptoquarks

In some SUSY models (e.g. two-Higgs-doublet) couplings are standard-model like: $\Gamma(D^+ \to \ell^+ \nu)$ modified by lepton-flavour independent factor, leaving *R* unchanged.

Some intriguing hints for violation of LFU from *B* decays (LHCb, Belle, BABAR): $R_K (b \rightarrow s \ell^+ \ell^-), R_{D^{(*)}} (b \rightarrow c \ell \nu)$

so, worthwhile to look in more detail, and in the charm sector

First observations of $D^+ \rightarrow \tau^+ \nu$ and six semi-muonic *D* decays:

Charm at BESIII | W. Gradl | 31

Summary of LFU measurements in charm decays

		References	Measured B(l)/B(l')	SM prediction	PRL121(
	$D^0 \rightarrow K^-$	PRL122(2019)011804	0.974 ± 0.014	~0.975	$\begin{array}{c} & & \\$
	$D^0 \rightarrow \pi^-$	PRL121(2018)171803	0.922 ± 0.038	~0.985	
	$D^0 \rightarrow \rho^-$	PRD104(2021)L091103	0.90 ± 0.11	0.93-0.96	1.5
	$D^+ \!$	EPJ C (2016) 76:369	$0.988 {\pm} 0.033$	~0.970	B 1 +++++++++++++++++++++++++++++++++++
	$D^+ \rightarrow \pi^0$	PRL121(2018)171803	0.964 ± 0.045	~0.985	0.5 1 2 0 1 2 q ² (GeV ² /c ⁴)
μ/e	$D^+ \rightarrow \omega$	PRD101(2020)072005	1.05 ± 0.14	0.93-0.99	DDI 122
	$D^{+}\!$	PRL124(2020)231801	0.91±0.13	0.97-1.00	
	$D_s^+ \rightarrow \eta$		1.05 ± 0.24		1.5 -
	$D_s^+ \rightarrow \eta'$	$D_s^+ \rightarrow \eta^*$ PRD97(2018)012006 $D_s^+ \rightarrow \phi$	1.14 ± 0.68	~1.0	K pie
	$D_s^+ \rightarrow \phi$		0.86±0.29		
	$\Lambda_c^+ \rightarrow \Lambda$	PLB676(2017)42,47	0.96±0.16	~1.0	0 0.5
- /	$D^+\!$	PRL123(2019)211802	3.21±0.77	2.66	q^2
τ/μ	$D_s^{+}\!$	PRL127(2021)171801	9.72±0.37	9.75	

Deviation from one due to the different PS available

No deviation from SM within statistics

Hadronic D decays

Strong phase in $D^0 o K^0_{ m s} \pi^+ \pi^-$

BESIII Phys. Rev. Lett. 124 (2020) 241802

Phys. Rev. D 101 (2020) 112002

Measurement of γ with GGSZ needs strong phase between D^0 and \overline{D}^0 across Dalitz plot, will limit uncertainty on γ

Direct measurement of strong phase requires quantum-correlated $D^0 \overline{D}^0$ pairs. So far, only CLEO.

Use model-independent approach to measure phase developed by Bondar & Poluektov, Eur. Phys. J. C 47 (2006) 347:

Determine amplitude-weighted averages

$$c_{i} = \frac{1}{\sqrt{F_{i}F_{-i}}} \int_{i} |f_{D}(m_{+}^{2}, m_{-}^{2})| |f_{D}(m_{-}^{2}, m_{+}^{2})| \times \cos[\Delta\delta_{D}(m_{+}^{2}, m_{-}^{2})] dm_{+}^{2} dm_{-}^{2}$$

in symmetric bins *i* on the Dalitz plot

Strong phase in $D^0 o K^0_{ m s} \pi^+ \pi^-$

BESIII Phys. Rev. Lett. 124 (2020) 241802

Phys. Rev. D 101 (2020) 112002

Exploit quantum-correlated $D^0 \overline{D}^0$ pairs at $\psi(3770)$:

Reconstruct signal decay vs. flavour specific, CP-even, CP-odd, and CP-mixed tags: 17 tag modes in total.

Effect of quantum correlation clearly visible: $D^0 \rightarrow K_s^0 \pi^+ \pi^-$ vs. CP tags

Strong phase in $D^0 o K^0_{\scriptscriptstyle S} \pi^+ \pi^-$

BESIII Phys. Rev. Lett. 124 (2020) 241802

Phys. Rev. D 101 (2020) 112002

Use three binning schemes (regions with pprox constant strong phase):

Strong phase difference between D^0 and \overline{D}^0

$D^{0} \rightarrow K^{-}\pi^{+}\pi^{+}\pi^{-} \text{ and } K^{-}\pi^{+}\pi^{0} \text{ JHEPO5(2021)164}$

Impact on γ in ${\it B}^+ ightarrow {\it D}{\it K}^+$

Toy study: use world average values for γ , r_B , δ_B , generate large samples of $B^+ \to DK^+ \to [K_s^0 \pi^+ \pi^-]K^+$ decays.

Sample s_i , c_i from BESIII measurement, determine γ :

Using modified optimal binning, contribution to $\Delta\gamma$ due to strong phases in D decays is 0.8°

Sufficiently small for expected statistical uncertainties at LHCb prior to HL-LHC, and for Belle II

Charmed baryons

Charmed baryons First hint for a charmed baryon at BNL PRL34(1975)1125 candidate for $\Sigma_c^{++} \rightarrow \Lambda_c^+ \pi^+$

Λ_{c}^{+}

Situation before 2014: fixed-target experiments (FOCUS, SELEX), e^+e^- *B*-factories (ARGUS, CLEO, BABAR, Belle)

- Known decays only pprox 60% of total width
- Many unknown decay channels
- Large uncertainties
- Most BF measured relative to $\Lambda_c^+
 ightarrow p K^- \pi^+$

Large experimental uncertainties

➡ slow development in theory

Winter 2014: BESIII collects 567 pb⁻¹ at 4.6 GeV, close to $\Lambda_c^+ \overline{\Lambda}_c^-$ threshold (35 days beam time)

Λ_c^+ data	in PDG2015	
C	Scale factor/ p	
C DECAY MODES	Fraction (Γ_i/Γ) Confidence level (MeV/c)	
Hadronic mod	es with a α : $S = -1$ final states	
R ⁰	(3.21± 0.30) %	
K ⁻ π ⁺	$(6.84^+ 0.32)\%$	-
nK*(802)0	$[a] (213 \pm 0.30)$ %	
$\Lambda(1232)^{++}K^{-}$	(118+0.27)% 22.9%	
$\Lambda(1520)\pi^+$	$[a] (2.4 \pm 0.6)\%$ 25.0%	
$pK^{-}\pi^{+}$ nonresonant	(3.8 ± 0.4)% 10.5%	
$\overline{K}^{0}\pi^{0}$	$(4.5 \pm 0.6)\%$ 13.3%	
K ⁰ n	$(1.7 \pm 0.4)\%$ 23.5%	
$K^{0}\pi^{+}\pi^{-}$	$(3.5 \pm 0.4)\%$ 11.4%	
$K^{-}\pi^{+}\pi^{0}$	(4.6 ± 0.8)% 13.0%	
$pK^{*}(892)^{-}\pi^{+}$	[q] (1.5 ± 0.5)% 33.3%	
$p(K^{-}\pi^{+})_{\text{nonresonant}}\pi^{0}$	(5.0 ± 0.9)% 18.0%	
$\Delta(1232)\overline{K}^{*}(892)$	seen	
$K^{-}\pi^{+}\pi^{+}\pi^{-}$	$(1.5 \pm 1.0) \times 10^{-3}$ 66.7%	
$K^{-}\pi^{+}\pi^{0}\pi^{0}$	(1.1 ± 0.5)% 45.4%	
Hadronic mod	des with a p: S = 0 final states	
π ⁺ π ⁻	$(4.7 \pm 2.5) \times 10^{-3}$ 45.4%	
$p f_0(980)$	[g] $(3.8 \pm 2.5) \times 10^{-3}$ 53.2%	
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	$(2.5 \pm 1.6) \times 10^{-3}$ 64.0%	
K+ K-	$(1.1 \pm 0.4) \times 10^{-3}$ 36.4%	
pφ	[q] (1.12± 0.23) × 10 ⁻³	
pK^+K^- non- ϕ	$(4.8 \pm 1.9) \times 10^{-4}$	
Hadronic modes v	with a hyperon: $S = -1$ final states	
π ⁺	(1.46± 0.13) % 8.9%	
$\pi^{+}\pi^{0}$	(5.0 ± 1.3)% 26.0%	
$\Lambda \rho^+$	< 6 % CL=9%	
$\pi^{+}\pi^{+}\pi^{-}$	(3.59± 0.28) % 7.8%	
$\Sigma(1385)^+\pi^+\pi^-, \Sigma^{*+} \rightarrow$	(1.0 ± 0.5)% 20.0%	
$\Lambda \pi^+$ $\Sigma(1385)^- \pi^+ \pi^+, \Sigma^{*-} \rightarrow$	$(7.5 \pm 1.4) \times 10^{-3}$ 18.7%	
$\Lambda \pi^{-}$		

Situation before 2014: fixed-target experiment (ARGUS, CLEO, BABAR,

- Known decays only
- Many unknown de
- Large uncertainties
- Most BF measured

Large experimental unce → slow development in

Winter 2014: BESIII collectore to $\Lambda_c^+ \overline{\Lambda}_c^-$ threshold (35 days beam time)

Λ_c^+ production close to threshold

Cross section measurement at threshold: BESIII, Phys. Rev. Lett. **120** (2018) 132001

BESIII dataset contains pprox 0.1*M* Λ_c^+ pairs

BESIII compared to Belle via ISR Phys. Rev. Lett. 101 (2008) 172001

Cross section jumps abruptly at threshold!

BESIII Λ_c^+ results from first round of data

17 publications from first 34 days of data taking at 4.6 GeV:

- Precise, absolute BF measurements for hadronic, semi-leptonic and inclusive decays
- Observation of CS decay $p\pi^+\pi^-$
- Evidence for CS decay $p\eta$
- First measurements for many decay asymmetries
- Λ_c^+ spin
- EM formfactor near threshold

Very successful programme: increase energy, take more data!

Hadronic decay 2014	: 0.567 fb ⁻¹ at 4.6 GeV
$\Lambda_c^+ \rightarrow p K^- \pi^+ + 11 \text{ CF modes}$	PRL 116, 052001 (2016)
$\Lambda_c^+ \rightarrow \mathbf{p} \mathbf{K}^+ \mathbf{K}^-, \mathbf{p} \pi^+ \pi^-$	PRL 117, 232002 (2016)
$\Lambda_c^+ \rightarrow \mathbf{nKs}\pi^+$	PRL 118, 12001 (2017)
$A_c^+ \rightarrow p\eta, p\pi^0$	PRD 95, 111102(R) (2017)
$\Lambda_c^+ \longrightarrow \Sigma^- \pi^+ \pi^+ \pi^0$	PLB 772, 388 (2017)
$\Lambda_c^+ o \Xi^{0(*)} K^+$	PLB 783, 200 (2018)
$\Lambda_c^+ o \Lambda \eta \pi^+$	PRD 99, 032010 (2019)
$A_c^+ o \Sigma^+ \eta$, $\Sigma^+ \eta^{\prime}$	CPC 43, 083002 (2019)
$\Lambda_c^+ \to \mathrm{BP}$ decay asymmetries	PRD 100, 072004 (2019)
$\Lambda_c^+ o p K_s \eta$	PLB 817, 136327 (2021)
Λ_c^+ spin determination	PRD 103, L091101(2021)
Semi-leptonic decay	
$\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$	PRL 115, 221805(2015)
$\Lambda_c^+ \rightarrow \Lambda \mu^+ \nu_\mu$	PLB 767, 42 (2017)
Inclusive decay	
$\Lambda_c^+ \rightarrow \Lambda \mathbf{X}$	PRL121, 062003 (2018)
$\Lambda_c^+ \rightarrow e^+ X$	PRL 121 251801(2018)
$\Lambda_c^+ \rightarrow K_s^0 X$	EPJC 80, 935 (2020)
Production	
$\Lambda_c^+ \Lambda_c^-$ cross section	PRL 120,132001(2018)

Λ_c^+ after 2015

Λ_{c}^{+} data	in PDG201	5
	Sca Fraction (E:/E) Confid	ile factor/ p lence level (MeV/c)
		and all (meripe)
PAdronic mode	s with a p: $S = -1$ final state (3.21 ± 0.30) %	15
$pK^-\pi^+$	(6.84 + 0.32)%	
nK*(892)0	$[a] (213 \pm 0.30)$ %	
$\Lambda(1232)^{++}K^{-}$	(118+027)%	22.9%
$A(1520)\pi^+$	$[a] (2.4 \pm 0.6)\%$	25.0%
$pK^{-}\pi^{+}$ nonresonant	$(3.8 \pm 0.4)\%$	10.5%
$p\overline{K}^0\pi^0$	$(4.5 \pm 0.6)\%$	13.3%
$pK^0\eta$	$(1.7 \pm 0.4)\%$	23.5%
$p\overline{K}^0\pi^+\pi^-$	(3.5 ± 0.4)%	11.4%
$pK^{-}\pi^{+}\pi^{0}$	(4.6 ± 0.8)%	13.0%
$pK^{*}(892)^{-}\pi^{+}$	[q] (1.5 ± 0.5)%	33.376
$p(K^{-}\pi^{+})_{nonresonant}\pi^{0}$	(5.0 ± 0.9)%	18.0%
$\Delta(1232)K^{*}(892)$	seen	
$pK^{-}\pi^{+}\pi^{+}\pi^{-}$	$(1.5 \pm 1.0) \times 10^{-3}$	66.7%
$pK^{-}\pi^{+}\pi^{0}\pi^{0}$	(1.1 ± 0.5)%	45.4%
Hadronic mod	es with a p: S = 0 final state	
$p\pi^{+}\pi^{-}$	$(4.7 \pm 2.5) \times 10^{-3}$	45.4%
$pf_0(980)$	[q] (3.8 ± 2.5) × 10 ⁻³	53.2%
$\rho \pi^{+} \pi^{+} \pi^{-} \pi^{-}$	$(2.5 \pm 1.6) \times 10^{-3}$	64.0%
pK^+K^-	$(1.1 \pm 0.4) \times 10^{-3}$	36.4%
pφ	[q] (1.12± 0.23)×10 ⁻³	
pK^+K^- non- ϕ	$(4.8 \pm 1.9) \times 10^{-4}$	
Hadronic modes w	ith a hyperon: $S = -1$ final s	tates
Λπ+	(146+013)%	8.9%
$\Lambda \pi^+ \pi^0$	$(50 \pm 13)\%$	26.0%
$\Lambda \rho^+$	< 6 %	CL=9%
$\Lambda \pi^{+} \pi^{+} \pi^{-}$	(3.59± 0.28)%	7.8%
$\Sigma(1385)^+\pi^+\pi^-, \Sigma^{*+} \rightarrow$	(1.0 ± 0.5)%	20.0%
$\Sigma^{\Lambda\pi^+}_{(1385)^-\pi^+\pi^+, \Sigma^{*-} \rightarrow \infty}$	(7.5 \pm 1.4) \times 10 ⁻³	18.7%
$\Lambda \pi^{-}$		

Charm at BESIII | W. Gradl | 44

PDG 2020

Hadronic modes with a *p* or *n*: S = -1 final states

Γ1	pK ⁰ _S		(1.59± 0.08) % ↓44% S=1.1
Γ2	$pK^{-}\pi^{+}$		(6.28± 0.32) % S=1.4
Γ ₃	$p \overline{K}^{*}(892)^{0}$	[a]	(1.96± 0.27) %
Γ4	$\Delta(1232)^{++}K^{-}$		(1.08± 0.25) %
Γ ₅	$\Lambda(1520)\pi^+$	[a]	(2.2 ± 0.5) %
Γ ₆	$pK^{-}\pi^{+}$ nonresonant		(3.5 ± 0.4)%
Γ7	$\rho K_{S}^{0} \pi^{0}$		(1.97± 0.13) % ↓50% S=1.1
Γ8	$nK_{S}^{0}\pi^{+}$		(1.82± 0.25)% First
Го	$p\overline{K}^{0}\eta$		(1.6 ± 0.4)%
Γ ₁₀	$\rho K_{S}^{0} \pi^{+} \pi^{-}$		$(1.60 \pm 0.12)\% \downarrow 28\%$ S=1.1
Γ ₁₁	$pK^{-}\pi^{+}\pi^{0}$		(4.46± 0.30)% ↓61% S=1.5
Γ ₁₂	$pK^{*}(892)^{-}\pi^{+}$	[a]	(1.4 ± 0.5) %
Γ ₁₃	$p(K^{-}\pi^{+})_{nonresonant}\pi^{0}$		(4.6 ± 0.8)%
Γ ₁₄	$\Delta(1232)\overline{K}^{*}(892)$		seen
Γ ₁₅	$pK^{-}2\pi^{+}\pi^{-}$		$(1.4 \pm 0.9) \times 10^{-3}$
Γ ₁₆	$pK^{-}\pi^{+}2\pi^{0}$		(1.0 ± 0.5)%

Hadronic modes with a m S = 0 final states

Γ17	$\rho \pi^0$	< 2.7	$\times 10^{-4}$ (L=90%
Γ ₁₈	pη	(1.24± 0.3	30) × 10 ⁻³	irst
Γ ₁₉	$p\omega(782)^{0}$	(9 ± 4	$) \times 10^{-4}$	
Γ ₂₀	$p\pi^{+}\pi^{-}$	(4.61± 0.2	28) × 10 ⁻³	irst
Γ21	p f ₀ (980)	[a] (3.5 ± 2.3	$3) \times 10^{-3}$	
Γ22	$p2\pi^{+}2\pi^{-}$	(2.3 ± 1.4)	$) \times 10^{-3}$	
Γ ₂₃	pK^+K^-	(1.06± 0.0	$(6) \times 10^{-3}$	
Γ24	$p\phi$	[a] (1.06± 0.1	14) × 10 ⁻³ 🔸	36%
Γ25	pK^+K^- non- ϕ	(5.3 ± 1.2)	$(2) \times 10^{-4}$	
Γ26	$p\phi\pi^0$	(10 ± 4	$) \times 10^{-5}$	
Γ27	$pK^+K^-\pi^0$ nonresonant	< 6.3	$\times 10^{-5}$ (\$=90%

Hadronic modes with a hyperon: S = -1 final states

Γ28	$\Lambda \pi^+$		($1.30\pm$	0.07) %		S=1.1
Γ29	$\Lambda \pi^+ \pi^0$		($7.1 \pm$	0.4)%	↓78%	S=1.3
Γ ₃₀	$\Lambda \rho^+$		<	6	%	C	L=95%
Γ ₃₁	$\Lambda \pi^- 2\pi^+$		($3.64\pm$	0.29) %		S=1.4

 $\begin{array}{ccc} \Gamma_{44} & \Sigma^{0} \pi^{+} \\ \Gamma_{45} & \Sigma^{+} \pi^{0} \\ \Gamma_{46} & \Sigma^{+} \eta \\ \Gamma_{47} & \Sigma^{+} \eta' \\ \Gamma_{48} & \Sigma^{+} \pi^{+} \pi^{-} \end{array}$ (1.29± 0.07)% ↓45% S=1.1 (1.25± 0.10)% ↓33% $(4.4 \pm 2.0) \times 10^{-3}$ (1.5 ± 0.6)% (4.50± 0.25)% ↓46% S=1.5 - 1 0

Λ_c^+ semileptonic decays: LQCD vs data

••••• DATA: $\Lambda_c^* \rightarrow \Lambda e^* v_e$ 0.2 LOCD: $\Lambda^* \rightarrow \Lambda e^* \gamma$ $d\Gamma/dq^2$ (ps⁻¹GeV⁻²) 0.15 0. 0.05 0 0.2 04 0.6 0.8 1.2 $a^2 (\text{GeV}^2/c^4)$ DATA: $\Lambda_{e}^{*} \rightarrow \Lambda e^{*}\nu_{e}$ $LOCD: A^+ \rightarrow Ae^+$ $(d_{2}^{-0.8})^{0.8}$ $f_{I}(q^2)$ 0.6 0.5 0.5 $q^2 (\text{GeV}^2/c^4)$ $q^2 (\text{GeV}^2/c^4)$ 1.5 0.8 (d₂) 60 (d₂) $f_{+}(q^{2})$ 0.5 0.4 0.5 $q^2 (\text{GeV}^2/c^4)$ q^2 (GeV²/c⁴)

BESIII, Phys. Rev. Lett. 129 (2022) 231803

LQCD: S. Meinel, Phys. Rev. Lett. 118 (2017) 082001

LQCD calculation used measured branching fraction as input: differential decay rate in rather good agreement

Form factors in data quite different from LQCD calculations

Availability of high-quality, precise data essential!

Charm at BESIII | W. Gradl | 45

Heavier charmed baryons

 Λ_{c}^{+} udc.

(a)

 Ξ_c^+

 Ξ_c^0

 $\sum_{\substack{ddc}}^{0}$

 $\left(egin{array}{c} \Xi_c^{\prime 0} \ dsc \end{array}
ight)$

 \sum_{udc}^{+}

 Ω_c^0

Energy thresholds

$\Lambda_c^+ \bar{\Sigma}_c^-$	4.74 GeV
$\Lambda_{c}^+ \bar{\Sigma}_{c} \pi$	4.88 GeV
$\Sigma_c \bar{\Sigma}_c$	4.91 GeV
$\Xi_c \bar{\Xi}_c$	4.94 GeV
$\Xi_c' \bar{\Xi}_c'$	5.16 GeV
$\Omega_{ m c} ar{\Omega}_{ m c}$	5.40 GeV

With energy upgrade to 5.6 GeV, can cover all ground-state charmed baryons in detail Study production and decays of excited charmed baryons

Charm at BESIII | W. Gradl | 46

BESIII Quo Vadis?

- Flavour physics at BESIII: charm
- Large data samples compared to predecessors (CLEO, ...), but small compared to LHCb
- Big advantage: production near threshold, closed kinematics, clean events, neutrals and missing energy!
- (Semi-)Leptonic decays of charmed hadrons
- Unique data sample: quantum-correlated $D^0 \overline{D}^0$ pairs to measure strong phases

just submitted our 500th paper: mini-workshop to celebrate on 31st May https://indico.ihep.ac.cn/event/19694/timetable/

Upgrade to accelerator: BEPCII-U project

- **Goal**: improve luminosity at large \sqrt{s}
- **Easiest upgrade**: install more RF power, optimize machine lattice
- **Bonus**: running above $\sqrt{s} \sim 5$ GeV becomes feasible charmed baryons besides Λ_c^+ : Σ_c , Ξ_c , Ω_c

Outlook for BESIII

- Currently running on $\psi(3770)$, with the goal to collect 20 fb⁻¹ in total
- Challenge: improve systematic uncertainties!
- Upgrade of inner tracking system (ageing): installation of 3-layer CGEM detector (2024)
- Upgrades to accelerator already performed
 - better feedback systems
 - ▶ automated switching from e^- to e^+ , for top-up injection ($\mathcal{L}_{int} + 30\%$)
 - power supplies and cooling for magnets, to allow running at higher \sqrt{s}
 - RF power upgrade to reach up to 5.6 GeV

Operate BESIII for several years after upgrade (2030?)

More exciting and precise results to come from the new larger datasets

Outlook for BESIII

- Currently running on $\psi(3770)$, with the goal to collect 20 fb⁻¹ in total
- Challenge: improve systematic uncertainties!
- Upgrade of inner tracking system (ageing): installation of 3-layer CGEM detector (2024)
- Upgrades to accelerator already performed
 - better feedback systems
 - ▶ automated switching from e^- to e^+ , for top-up injection ($\mathcal{L}_{int} + 30\%$)
 - power supplies and cooling for magnets, to allow running at higher \sqrt{s}
 - RF power upgrade to reach up to 5.6 GeV

Operate BESIII for several years after upgrade (2030?)

More exciting and precise results to come from the new larger datasets

Luminosity expectation Belle II (ISR) vs BESIII (direct)

Note: old luminosity projection for Belle II; current $\mathcal{L}_{int} = 428 \text{ fb}^{-1}$, target is 4 ab^{-1} by 4/2026

Charm at BESIII | W. Gradl | 51
