

Experimental status of lifetimes, mixing and CP violation Quo Vadis Islay July 2023

M. Needham University of Edinburgh

Outline

I decided to my brief interpret it as similar to a talk I gave in 2017 at a UK flavour workshop in Durham.

https://conference.ippp.dur.ac.uk/event/ 573/timetable/#20170905.detailed

I took plots for recent LHCb results from the LHC seminar <u>https://indico.cern.ch/event/1281612/</u>

Several plots lifted from papers published by Alex over the last few years

2

"The concept of progress acts as a protective mechanism to shield us from the terrors of the future."

Outline

- Introduction
- Neutral meson mixing
- Experimental overview
- ϕ_{s} , effective lifetimes and $\Delta \Gamma_s$
- $\sin 2\beta$
- $\Delta \Gamma_d / \Gamma_d$
- Thoughts for the future

Standard Candles

Standard Model tests

LHCb Run: Scorecard

Measurement	Run 1	Run 2
$sin(2\beta)$	~~	~~
Δm_d	~~	×
$\Delta\Gamma_{ m d}$	~~	×
ϕ_s in $\mathrm{B_S}{ o}J/\psi$ $\mathrm{K^+K^-}$	\checkmark	\checkmark
ϕ_s other modes	~ ~	✓
Δm_s	$\checkmark\checkmark$	\checkmark
$\Delta\Gamma_{ m s}$	~~	~~
Penguin Pollution	~~	×
b-lifetimes	 	×
$ au_L$	$\checkmark\checkmark$	v

✓ ✓ All data, ✓ partial, × nothing

LHCb Run: Scorecard

Measurement	Run 1	Run 2
$B_S \rightarrow J/\psi K^+K^-$ around ϕ	 	
B _S →J/ψ K ⁺ K ⁻ above $φ$	 	✓
$B_S \rightarrow J/\psi K^+K^-$ (electrons)	 	×
$B_S \rightarrow \psi(2s) \ K^+K^-$	~~	×
$B_s \rightarrow D_s^+ D_s^-$	~~	×

CP violation in B_s mixing

- Flavour eigenstates mix to give physical states (see e.g. arxiv:1306.6474)
- Interference between decays with/without mixing gives measurable phase - $B_s^0 \rightarrow D_s^-\pi^+$ - $\overline{B}_s^0 \rightarrow D_s^-\pi^+$ - Untaged $-K^0(t=0) \rightarrow \overline{K}^0$

CP violation in B_s mixing

$$\phi_s = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right)$$
$$\Delta\Gamma_s = \Gamma_L - \Gamma_H$$
$$\Delta m_s = M_H - M_L$$

• Observable phase $\phi_s = -2\beta_s = \Phi_M - 2 \Phi_D$

- In the Standard Model expected to be small $\phi_s = -0.0368$ radian
- Larger values possible in models of New Physics

Golden mode used by all LHC experiments $B_S \rightarrow J/\psi \phi$

• LHCb also studied $B_S \rightarrow J/\psi K^+K^-$, $B_S \rightarrow J/\psi \pi^+\pi^-$, $B_S \rightarrow \psi(2s)\phi$, $B_S \rightarrow D_s^+D_s^-$

Time dependent studies

Understanding the decay-time distribution is critical for measurement of B-mixing parameters, particularly lifetimes

There is experimental evidence these studies are hard

Measuring the decay-time

$$t = \frac{m}{p} \cdot l$$

Critical to measure accurately and in unbiased way the decay length with the vertex detector

e.g. LHCb VELO (original version):

Two half detectors with modules with r and ϕ sensors

Track reconstruction for example combining projections in $r-\phi$ can lead to inefficiency at high times

Hadronic environment: cuts on decay-time related quantities to reduce rate

Modelling time acceptance

Two experimental approaches to understand decay time acceptance

Relative measurements

Use control channel with similar kinematics/trigger to signal to make relative measurement

ϕ_s : Looking back

- Extensive studies prior to first LHC running in 2009/10
- Golden mode $B_S \rightarrow J/\psi \phi$ extensively studied but also many CP even modes
- CP odd modes (e.g $B_S \rightarrow J/\psi \pi^+\pi^-$) hardly considered

Channels	$\sigma(\phi_s) \ [\text{ rad }]$	Weight $(\sigma/\sigma_i)^2$ [%]
$B_s \rightarrow J/\psi \eta (\pi^+ \pi^- \pi^0)$	0.142	2.3
$B_s \to D_s D_s$	0.133	2.6
$B_s \rightarrow J/\psi \eta(\gamma \gamma)$	0.109	3.9
$B_s \to \eta_c \phi$	0.108	3.9
Pure CP eigenstates	0.060	12.7
$B_s \to J/\psi \phi$	0.023	87.3
All CP eigenstates	0.022	100.0

Thesis of Luis Fernandez Summarized in LHCb-2006-047 <u>Acta Phys. Pol. B 38 (2007) 931-940</u>

2fb⁻¹

Reality – CP-odd studies turned out to be more favoured experimentally than CP-even

Measuring ϕ_s

Phys. Lett. B 816 (2021) 136188

 ϕ_s : CMS

8 TeV data plus 96.4 fb⁻¹ up from 2017-18

```
\label{eq:phi} \begin{split} \phi_{\rm s} &= -21\pm44\,({\rm stat})\pm10\,({\rm syst})\,{\rm mrad},\\ \Delta\Gamma_{\rm s} &= 0.1032\pm0.0095\,({\rm stat})\pm0.0048\,({\rm syst})\,{\rm ps}^{-1} \end{split}
```


 ϕ_s : LHCb

New LHCb result analysing full Run 2 dataset

LHCb-Paper-2023-016

ϕ_s : LHCb

LHCb has also measured from a time dependent amplitude analysis of $B_S \rightarrow J/\psi \pi^+\pi^-$ using data up to 2016 used

LHCb: High mass KK

JHEP08(2017)037

LHCb has studied CP violation using J/\vKK events above ϕ resonance with Run 1

Summary of ϕ_s

Penguin Pollution

Fit to CP observables + polarization amplitudes in $B_s \rightarrow J/\psi K^*$, $B^0 \rightarrow J/\psi \rho$

Effect of penguins bounded to be less than current uncertainties

LHCb: and charmless...

Untagged Measurements

25

t [ps]

arxiv: 2206.03088 $B_s \rightarrow J/\psi\eta$ lifetime: Run 2 Run 2 $\tau_L = 1.445 \pm 0.016(\text{stat}) \pm 0.008(\text{syst}) \text{ ps.}$ Run 1+ 2 avg $\tau_L = 1.452 \pm 0.014 \pm 0.007 \pm 0.002 \text{ ps}$

Result in good agreement with SM prediction and other decay modes

Statistically limited. Room for improvement in Run 3

B_s lifetime summary

Effective lifetimes less precise but consistent with $B_s \rightarrow J/\psi\phi$

Tension in measurements of both $\Delta\Gamma_s$ and Γ_s using $B_s \rightarrow J/\psi\phi$ by the LHC collaborations

Effective lifetimes tend to favour $\Delta\Gamma_s$ higher than ATLAS

Maybe largely aesthetic at moment but if you dig deep working out where/how Bd lifetime goes into effective lifetimes is a bit of a mess.

B_s lifetime summary

CP even modes: Other possibilities

As mentioned before data taking many CP-even modes were studied in the context of ϕ_s

 $\begin{array}{l} \eta' \to \rho^0 \gamma \\ \eta' \to \eta \pi^+ \pi^- \end{array}$ Branching fraction measurements made using these modes e.g. JHEP 01 (2015) 024 that probe SU(3), $\eta - \eta'$ mixing Modes with 2 photons are clean but limited statistics, order $\eta \to \pi^0 \pi^+ \pi^-$ 1000 - 2000 events Branching fraction measurements made using these modes Modes with 2 photons are clean but limited statistics, order

Single photons good statistics, more challenging backgrounds

 $\eta' \rightarrow \rho^0 \gamma$ has reasonable statistics and can be used to measure $\Delta \Gamma_s$ independent of B⁰ lifetime in combination with $B_S \rightarrow J/\psi \pi^+\pi^-$

Other modes with small branching fractions, feasible but not explored $\eta \to \pi^+ \pi^- \gamma \quad \eta' \to \gamma \gamma$

Branching fraction measurements of $\psi(2S)$ modes made with Run 1 (see NUCL. PHYS. B871 (2013) 403), No studies of effective lifetimes

 $C_{\psi(2S)K_{
m S}^0}^{
m Run\ 2} = -0.083 \pm 0.048\,(
m stat) \pm 0.005\,(
m syst)$

 $S_{J/\psi\,(
ightarrow e^+e^-)K_{
m S}^0}^{
m Run\ 2}=\ 0.752\pm0.037\,(
m stat)\pm0.084\,(
m syst)$

 $C_{J/\psi\,(
ightarrow e^+e^-)K_{
m S}^0}^{
m Run\ 2} = 0.046\pm 0.034\,(
m stat)\pm 0.008\,(
m syst)$

New LHCb Run 2 results using $B_d \rightarrow J/\psi K_s$ (both muons and electrons) and $B_d \rightarrow \psi(2S)K_s$

$$N_{\psi(2S)(o\mu\mu)K^0_{
m S}}=23\,570\pm164$$

31

 I/c^2

0.000

-0.025

-0.050

$\sin 2\beta$

Source	$\sigma(S)$	$\sigma(C)$
Fitter validation	0.0004	0.0006
$\Delta \Gamma_d$ uncertainty	0.0055	0.0017
FT calibration portability	0.0053	0.0001
FT $\Delta \epsilon_{tag}$ portability	0.0014	0.0017
Decay-time bias model	0.0007	0.0013

Input parameter

sing better ooking back

PROCEEDINGS OF THE WORKSHOP ON STANDARD MODEL PHYSICS (AND MORE) AT THE LHC

Tagging method	ATL	LAS	CN	/IS	LH	Cb
	$\mu^+\mu^-$	e^+e^-	$\mu^+\mu^-$	e^+e^-	$\mu^+\mu^-$	e^+e^-
Lepton	0.039	0.031	0.0	31	n/a	n/a
$B-\pi$	0.026	n/a	0.0	23	n/a	n/a
SS Jet charge	n/a	n/a	0.0	21	n/a	n/a
OS Jet charge	n/a	n/a	0.0	23	n/a	n/a
Lepton and kaon	n/a	n/a	n/	′a	0.023	0.051
Total	0.0	17	0.0	15	0.0	21

LHCb numbers for 2fb⁻¹

- Expected LHCb precision with 6 fb⁻¹(back in 2000) was 0.012
- Achieved 0.015, which is remarkably close
 - Especially considering the reoptimization of the detector led to less acceptance for $\rm K_{\rm s}$

Tension between D0 like-sign dimuon measurement and SM led to renewed interested in $\Delta\Gamma_d$ a decade or so ago. Important systematic in sin2 β measurement Measurements from all three LHC collaborations. Most precise experimental result from ATLAS

 $\Delta \Gamma_d / \Gamma_d = (-0.1 \pm 1.1 \text{ (stat.)} \pm 0.9 \text{ (syst.)}) \times 10^{-2}$

Delphi

BaBar

 $\Delta \Gamma_d^{\text{SM}} = (2.6 \pm 0.4) \times 10^{-3} \, \text{ps}^{-1}$ arxiv: 2211.02724

LHCb result is only with fraction of Run 1 dataset: Run 2 update would be interesting

> With 300 fb⁻¹ precision of 0.001 on could be achieved on $\Delta\Gamma_d/\Gamma_d$ By LHCb Upgrade 2. Potential to pin down to be non-zero/precision SM tests see arxiv:1808.08865

al $B_{\alpha}^{0} - \bar{B}_{\alpha}^{0}$ system is described by the Schrödinger equation with Hamilto-

Prospects for B-mixing

No sign of NP \otimes

Still room for New Physics amplitude at level of 10 % in $B_{d_1}B_s$ mixing S In the next decades move from 10 fb⁻¹ to 300 fb⁻¹ with LHCb upgrades plus ATLAS/CMS/Belle 2

Prospects for B-mixing

Thoughts

The Run 1+2 era is ending

A lot was achieved ③, close to pre-LHC expectations

Some things were not in the pre-LHC program: e.g. high J/ ψ KK, J/ $\psi\pi\pi$ \odot

Some things were not fully exploited: CP even eigenstates ③

Several measurements still to be updated to full dataset: important to exploit power of Run 1+2 datasets of all LHC experiments (while balancing that Run 3 is the future)

Entering the era of the LHC upgrades and Belle 2

Thoughts

Personal top 3 pick of things still to be done with Run 2

 B^+ and B^0 lifetime: Improve precision of standard candles. With Run 2 LHCb alone statistical precision of 1 ps can be achieved for B^+

 $\Delta \Gamma_d$: Many good reasons to measure better

b-baryon lifetimes: a lot of progress in Run 1, but no Run 2 results?

Thoughts

The upgrade era is (almost) here

Early days of LHCb upgrade will provide many interesting opportunities

Lifetimes then $\Delta m_{s,} \Delta m_{d}$ ideal early program measurements to demonstrate new detector capabilities (as was case in 2010) Bonus: New pixel detector with different systematic uncertainties

Since systematics are important mandatory to cross-check results with different modes, techniques and experiments

Run 3 provides opportunity to make precision measurement of b baryon/hadron lifetimes, testing HQET

Summary

 B_s mixing parameters known with precision after Run 1+2

• No sign of New Physics \otimes

Still more Run 2 to come

• Both tree-level and with charmless decays

Important to exploit precision by controlling theoretical uncertainties with data driven approaches

• Ensure that less high impact supporting measurements and cross-checks get done

Run 3: will give even larger datasets, with new and more precise detectors

"Lanark said irritably, "You seem to understand my questions, but your answers make no sense to me." "That's typical of life, isn't it?"

Backup

Predictions for $\Delta\Gamma_s$

Value $[\times 10^{-2} \text{ps}^{-1}]$	Renormalization scheme	Reference
7.7 ± 2.2	Pole mass	Asatrian <i>et. al.</i> $[1]$
8.8 ± 1.8	\overline{MS}	Asatrian <i>et. al.</i> $[1]$
9.2 ± 1.4	\overline{MS}	Davies <i>et. al.</i> $[2]$
9.1 ± 1.3	\overline{MS}	Lenz $et. al. [3]$
7.6 ± 1.7	Avg. $\overline{MS} + PS$	Gerlach $et. \ al. \ [4]$

- [1] Hrachia M. Asatrian et al. Penguin contribution to the width difference and asymmetry in mixing. *Phys. Rev. D*, 102(3):033007, 2020.
- [2] Christine T. H. Davies et al. Lattice qcd matrix elements for the $B_s^0 \bar{B}_s^0$ width difference. *Phys. Rev. Lett.*, 124(8):082001, 2020.
- [3] Alexander Lenz and Gilberto Tetlalmatzi-Xolocotzi. Model-independent bounds on new physics effects. *JHEP*, 07:177, 2020.
- [4] Marvin Gerlach et al. The width difference in $B \overline{B}$ mixing at order α_s and beyond. *JHEP*. 04:006. 2022.