Experiment - Rare decays Test the Standard Model with meson decays

Johannes Albrecht, TU Dortmund

FSP LHCb Erforschung von Universum und Materie

22. June 2023

Heisenberg-Programm

<u>Content</u>

22.06 2023

- Rare decays:
 - leptonic
 - $b \to s \ell^+ \ell^-$
 - Radiative decays

Johannes Albrecht

Testing $b \rightarrow s \ell^+ \ell^-$ transitions

 $b \to s \ell \ell$ decays in the SM

Testing $b \rightarrow s \ell^+ \ell^-$ transitions

$b \rightarrow s \ \mu^+\mu^-$ base diagram

- Purely leptonic
 - "add nothing"
- Semileptonic
 - add d quark as spectator $\rightarrow B^0 \rightarrow K^{*0} \mu^+ \mu^-$
 - add s quark as spectator $\rightarrow B_s \rightarrow \phi \mu^+ \mu^-$
 - add u quark as spectator $\rightarrow B^+ \rightarrow K^+ \mu^+ \mu^-$

Theory prediction: Standard Model

decay	SM
$B_s \rightarrow \mu^+ \mu^-$	3.66±0.14 x 10 ⁻⁹
${ m B^0} { ightarrow} \mu^+ \mu^-$	1.1±0.1 x 10 ⁻¹⁰

SM: Bobeth, Stamou et al: PRL112(2014)101801 Beneke et al, JHEP10(2019)232 Mixing effects: Fleischer et al, PRL109(2012)041801

Left handed couplings \rightarrow helicity suppressed

Discovery channel for New Phenomena

→ Very sensitive to an extended scalar sector (e.g. extended Higgs sectors, SUSY, etc.)

Recent LHCb measurement [PRL 128 (2022) 041801] [PRD 105 (2022) 012010] $\begin{aligned} \mathcal{B}(B_s^0 \to \mu^+ \mu^-) &= (3.09^{+0.46}_{-0.43} + 0.15) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &= (1.2^{+0.8}_{-0.7} \pm 0.1) \times 10^{-10} \quad (\mathcal{B} < 2.6 \times 10^{-10} \ @ 95\% \text{ CL}) \end{aligned}$

Golden channel: $B_{s,d} \rightarrow \mu^+\mu^-$ from LHCb .. and CMS

- New precise CMS measurement moves average further to SM [CMS-PAS-BPH-21-006] $\mathcal{B}(B_s^0 \to \mu^+\mu^-) = (3.83^{+0.38}_{-0.36}(\text{stat})^{+0.19}_{-0.16}(\text{syst})^{+0.14}_{-0.13}(f_s/f_u)) \times 10^{-9}$ $\mathcal{B}(B^0 \to \mu^+\mu^-) = (0.37^{+0.75}_{-0.67}_{-0.09}) \times 10^{-10}$ ($\mathcal{B} < 1.9 \times 10^{-10}$ @ 95% CL)
- Precision approaches 10%
- Chapeau to our CMS colleagues. Inspires hard work for LHCb

Effective lifetime

The decay time distribution gives access to complementary information related to B⁰_s-B⁰_s mixing.
The SM predicted *effective lifetime* is equal to that of the heavy B⁰_s mass eigenstate: [PRL 109 (2012) 041801]

$$\tau_{\mu^{+}\mu^{-}} \equiv \frac{\int_{0}^{\infty} t\Gamma(B_{s}^{0}(t) \to \mu^{+}\mu^{-}) dt}{\int_{0}^{\infty} \Gamma(B_{s}^{0}(t) \to \mu^{+}\mu^{-}) dt} \quad \stackrel{\text{SM}}{=} \quad \tau_{H} = 1.624 \pm 0.009$$

Results are consistent with SM expectation of $\tau_{\mu^+\mu^-} = \tau_H$ at 1.5 σ (LHCb) and 1 σ (CMS).

22.06.2023

More on leptonic decays

 $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ [PRD 105 (2022) 012010] ISR contribution in high q^2 region.

Issues: SM prediction

LHCb: $B \rightarrow \mu\mu\gamma \ no \gamma$

Reconstructed photon in progress

CLS LHCb Candidates / (50 MeV/c²) Data LHCb 9 fb⁻¹ $9 \, \text{fb}^{-1}$ Total 0.8 $\rightarrow \mu^+\mu^-\mu^+\mu^-$ Observed $0.60 \le BDT < 1.00$ Combinatorial Expected $\pm l\sigma$ 0.6 $\pm 2\sigma$ GammaCombo 0.4 2 0.2 90.0% 9<u>5.0%</u> 00 5000 6000 5500 0.5 15 $B(B^0_s \rightarrow \mu^+ \mu^- \mu^+ \mu^-)$ $m(\mu^{+}\mu^{-}\mu^{+}\mu^{-})$ [MeV/c²]

Search for light scalars

motivation for more studies in four leptons

 $B_s^0 \to e^+ e^-$ [PRL 124 (2020) 211802]

"Just bad muons?" Increased helicity suppression makes $B \rightarrow e^+e^-$ a clean Null test

Similarly for LFV decays (not discussed here)

$b \rightarrow s \ \mu^+\mu^-$ base diagram

- Purely leptonic
 - "add nothing"

Semileptonic

- add d quark as spectator $\rightarrow B^0 \rightarrow K^{*0} \mu^+ \mu^-$
- add s quark as spectator $\rightarrow B_s \rightarrow \phi \mu^+ \mu^-$
- add u quark as spectator $\rightarrow B^+ \rightarrow K^+ \mu^+ \mu^-$

Angular analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Observables depend on $B \rightarrow K^*$ form factors and on short distance physics

Angular analysis of $B^0 \,{\to}\, K^{*0}\,\mu^+\mu^-$

- LHCb published the first full angular analysis of the decay
 - Unbinned maximum likelihood fit to $K\pi\mu\mu$ mass and three decay angles
 - Simultaneously fit $K\pi$ mass to constrain s-wave configuration
 - Efficiency modelled in four dimensions

22.06.2023

Johannes Albrecht

13/33

Results

References: LHCb [JHEP 02 (2016) 104] , CMS [PLB 753 (2016) 424] BaBar [arXiv:1508.07960] CDF [PRL 108 (2012) 081807] Belle [PRL 103 (2009) 171801].

Results

- Situation unclear. Clean up by smarter observables
 - $P_i^{(i)}$ basis Reparameterise the fit to obtain optimised observables: form factor uncertainties cancel at first order

JHEP 12 (2014) 125, JHEP 09 (2010) 089

$$P_{4,5,8}' = \frac{S_{4,5,8}}{\sqrt{F_{\rm L}(1 - F_{\rm L})}}$$

 Full Run 1 analysis confirms effect Run 2 update coming

17/33 *LHCb*

Situation unclear.... If real, expect discrepancies in other $\mathbf{b} \to \mathbf{s}$ decays ..

Puzzling deviations: $B^+ \rightarrow K^{*+} \mu^+ \mu^-$

- Recent LHCb measurement using Run 1+2 data [PRL 126 (2021) 161802]
- Global tension corresponding to 3.1 σ , consistent with $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Other $b \rightarrow s \ \mu^+\mu^-$ decays

- Decay modes with same effective Feynman diagram accessible
 - \rightarrow different spectator quarks
- Test for same new effects
 → expect suppressed branching fractions

 γ, Z^0

S

BR of $B_s \rightarrow \phi \mu^+ \mu^-$

Recent LHCb measurement using full Run 1+2 sample [PRL 127 (2021) 151801]
d\$\mathcal{B}(B_s^0 \rightarrow \phi \mu^+ \mu^-, 1.1 < q^2 < 6 \text{ GeV}^2/c^4) = (2.88 \pm 0.21)10^{-8} \text{GeV}^2/c^4\$
Tension with SM at 3.6 \$\sigma\$ (LCSR+Lattice) and 1.8 \$\sigma\$ (LCSR only)

$b \rightarrow s \ell^+ \ell^-$ branching fraction measurements

$b \rightarrow s \ell^+ \ell^-$ branching fraction measurements

 Recent developments on non-local corrections [JHEP 09 (2022) 133] and new results from Lattice QCD [HPQCD, arXiv:2207.13371]

23/33

LHCb THCp

Branching fractions of $b \rightarrow s \ \mu^+\mu^-$

- Analysis of large class of $b \to s, d \; \mu^+ \mu^- \, \text{decays}$
 - Several tensions seen, but individual significance is moderate
 - Tendency to undershoot prediction of differential x-sections

 intriguing hint or theoretical issue in prediction?

→ TH developments needed as well as more measurements

22.06.2023

Johannes Albrecht

QCD or something (even) more interesting?

Disentangling hadr. contributions requires work from theory and experiment

- Progress on theory side:
 - Form-factors are systematically improved on the lattice [PRD 107 (2023) 1]
 - Recent more precise estimation of charm-loop effect [JHEP 09 (2022) 133]
- Exploit q²-dependence: charm-loop rises towards cc̄-resonances
 NP q²-independent

 q^2 -unbinned approaches to better exloit data [JHEP 11 (2017) 176]
Different $c\bar{c}$ -loop parameterisations pursued [EPJC 78 (2018) 453] [JHEP 10 (2019) 236]
[JHEP 09 (2022) 133]

- LHCb has measured these observables in a time-dependent tagged analysis of $B_s^0 \rightarrow \phi \gamma$.
- Results are in agreement with the SM predictions [PLB 664 (2008) 174-179].
- No evidence for enhancement of right-handed photons.

Photon polarisation and *CPV* in
$$B_s^0 \to \phi \gamma$$

LHCb results: [PRL 123 (2019) 8, 081802]
 $A_{\phi\gamma}^{\Delta} = -0.67_{-0.41}^{+0.37} \text{ (stat.)} \pm 0.17 \text{ (syst.)}$
 $C_{\phi\gamma} = 0.11 \pm 0.29 \text{ (stat.)} \pm 0.11 \text{ (syst.)}$
 $S_{\phi\gamma} = 0.43 \pm 0.30 \text{ (stat.)} \pm 0.11 \text{ (syst.)}$

Virtual photon polarization in $B^0 \rightarrow K^{*0}e^+e^-$

- At low q^2 , the $B^0 \to K^{*0} e^+ e^-$ decay is dominated by virtual photon contributions from $\mathcal{C}_7^{(')}$.
- The angular distribution at very low q^2 simplifies to four observables: F_L , $A_T^{\text{Re}} \equiv 2P_2$, $A_T^{(2)} \equiv P_1$, $A_T^{\text{Im}} \equiv -2P_3^{CP}$.
- $A_{\rm T}^{(2)}$ and $A_{\rm T}^{\rm Im}$ are sensitive to the virtual photon polarisation.

 $\operatorname{Re}(C_7'/C_7)$

• Currently the strongest constraints on contributions from right-handed photons.

Going Baryonic

Photon polarisation in $\Lambda^0_b \to \Lambda \gamma$

LHCb results [PRD 105 (2022) 5, L051104]:

$$\begin{split} &\alpha_{\gamma} = 0.82^{+0.17}_{-0.26} \text{ (stat.)}^{+0.04}_{-0.13} \text{ (syst.)} \\ &\alpha_{\gamma}^{-} > 0.56 \text{ (0.44) at } 90\% \text{ (95\%) C.L.} \qquad (\Lambda_b^0) \\ &\alpha_{\gamma}^{+} = -0.56^{+0.36}_{-0.33} \text{ (stat.)}^{+0.16}_{-0.09} \text{(syst.)} \qquad (\overline{\Lambda}_b^0) \end{split}$$

• Consistent at 1σ with SM prediction of 1 for α_{γ} .

• Consistent with *CP* symmetry, $\alpha_{\gamma}^{-} = -\alpha_{\gamma}^{+}$.

Can we think of observables (eg utilizing the spin) to make the Baryon more than a bad meson?

28/33 *LHCb*

No slide on rare D, K, ..

$\mathcal{B}(D^0 \to \mu^- \mu^+) < 3.1(3.5) \times 10^{-9}$ at 90 (95)% C PAPER-2022-029, arXiv:2212.11203

"Angular analysis of $D^0 \to \pi^- \pi^+ \mu^+ \mu^-$ and $D^0 \to K^- K^+ \mu^+ \mu^-$ decays and search for CP violation"

LHCb-PAPER-2021-035 arXiv:2111.03327

• shown examples: SM null tests $\langle S_{5,6,7} \rangle [\langle S_6 \rangle \sim A_{FB}]$

Also here, we have a nice dataset on tape.

Funny ideas welcome .

- Abundant normalisation yield
- 90% C.L. by integrating positive side of profile likelihood

$$\begin{split} \mathcal{B}(K_{\rm S}^0 &\to \mu^+ \mu^- \mu^+ \mu^-) < 5.1 \times 10^{-12} \\ \mathcal{B}(K_{\rm L}^0 &\to \mu^+ \mu^- \mu^+ \mu^-) < 2.3 \times 10^{-9}, \end{split}$$

 Modelling of trigger efficiency is leading systematic

LHCb-PAPER-2022-035 Candidates/(2.2 MeV/c²) LHCb 5.1 fb⁻¹ 500 450 550 600 $m_{\pi^+\pi^-}$ [MeV/c²] LHCb LHCb MeV/ 5.1 fb 550 600 450 500 550 $m_{4\mu}$ [MeV/ c^2] m_{Au} [MeV/ c^2]

Johannes Albrecht

Quo vadis ?

22.06.2023

Johannes Albrecht

30/33

Some work to do before the harvest of Run 3 begins

Concerning rare decays, now is a very good time for ideas to exploit the Run 1 and 2 dataset

E.g. $B \rightarrow \rho \mu \mu, \Lambda_b \rightarrow \Lambda^*(pK) \mu \mu,$ $B^+ \rightarrow K \pi \pi \ell \ell, \Xi_b^0 \rightarrow \Lambda \mu \mu, ...$ (my ideas, what are yours?)

One symbol summary

