

Lepton Flavour Universality in Rare B decays Paula Álvarez Cartelle

Heavy Flavour 2023 - Quo Vadis? June 2023

LH(

 $b \rightarrow s \ell^+ \ell^- decays$

Suppressed in the SM

- Effects of new physics can be relatively large
- Access high mass scales, due to virtual contributions

FCNC transitions, such as $b \rightarrow s(d) \ell \ell$ decays, are excellent candidates for indirect NP searches

Rare *B* decays offer rich phenomenology: Branching ratios, angular observables, LFU ratios...

Heavy flavour 2023 - Quo Vadis?

W

b

s

The di-lepton spectrum

Heavy flavour 2023 - Quo Vadis?

Ratios of muons/electrons are extremely well predicted in the SM

- Hadronic uncertainties of O(10-4)
- QED uncertainties can be O(10-2)
- Any statistically significant deviation from 1 is a sign of New Physics

K, *K*^{*}, *φ*, *pK*... $\frac{dq^2}{dq^2} dq^2 SM \\ \cong 1$ $\int \frac{d\Gamma(B \to H_s e^+ e^-)}{dq^2} dq^2$

LFU tests in $b \rightarrow s\ell + \ell -$

- Before Dec 22, we had an pattern of measurements all below the SM prediction
- These aligned well with other deviations seen
 - in $b \rightarrow s \mu \mu$ observables (BR, angular...)

Heavy flavour 2023 - Quo Vadis?

[JHEP,2020,40 (2020)]

 R_{pK} \dashv

[JHEP08(2017)055]

 $q^2 \in [0.1, 6]~{
m GeV^2/c^4}$

 $q^2 \in [1.1, 6] \text{ GeV}^2/c^4$ $q^2 \in [0.045, 1.1] \text{ GeV}^2/c^4$ $R_{K^{*0}}$ -[PRL 128 (2022) 191802] $q^2 \in [0.045, 6.0]~{
m GeV^2/c^4}$ $R_{K^{*+}} \dashv$ [PRL 128 (2022) 191802] $\begin{vmatrix} B^0 \rightarrow K_S^0 \ell \ell \\ 9 f b^{-1}, 1.5 \sigma \end{vmatrix}$ $R_{K^0_S}$ $q^2 \in [1.1, 6]~{
m GeV^2/c^4}$ [Nat. Phys. 18, 277-282 (2022)] R_K $9 f b^{-1}, 3.1 \sigma$ https://www.nature.com/articles 41567-021-01478-8 (*)Illustration purposes **---** SM $R_X = \frac{\mathcal{B}(b \to s\mu^+\mu^-)}{\mathcal{B}(b \to se^+e^-)}$

(*) Measurements from Belle not shown (larger statistical uncertainties)

[R. Quagliani, CERN seminar 12/22]

LHCb only

LFU tests in $b \rightarrow s\ell^+\ell^-$

- Before Dec 22, we had an pattern of measurements all below the SM prediction
- These aligned well with other deviations seen
 - in $b \rightarrow s \mu \mu$ observables (BR, angular...)

Heavy flavour 2023 - Quo Vadis?

- Electrons lose a large fraction of their energy through Bremsstrahlung radiation
 - Bremsstrahlung recovery: Look for photon clusters in the calorimeter $(E_T > 75 \text{ MeV})$ compatible with electron direction before magnet
- After this correction electrons still have
 - Lower reconstruction/trigger/PID efficiency
 - ► Worse mass and q² resolution (more background)

- Electrons lose a large fraction of their energy through Bremsstrahlung radiation
 - Bremsstrahlung recovery: Look for photon clusters in the calorimeter $(E_T > 75 \text{ MeV})$ compatible with electron direction before magnet
- After this correction electrons still have
 - Lower reconstruction/trigger/PID efficiency
 - ► Worse mass and q² resolution (more background)

Flavour at the crossroads 2022

P. Álvarez Cartelle (Cambridge)

The double ratio

- - reduces impact of the differences in efficiency between electrons and muons

• Measure R_H as a double ratio, relative to equivalent ratio for $B \to H_s J/\psi(\ell \ell)$ decays

$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+}\mu^{+}\mu^{-})}{\mathcal{B}(B^{+} \to K^{+}J/\psi(\mu^{+}\mu^{-}))} / \frac{\mathcal{B}(B^{+} \to K^{+}e^{+}e^{-})}{\mathcal{B}(B^{+} \to K^{+}J/\psi(e^{+}e^{-}))}$$
$$= \frac{N(K^{+}\mu^{+}\mu^{-})}{N(K^{+}J/\psi(\mu^{+}\mu^{-}))} \cdot \frac{N(K^{+}J/\psi(e^{+}e^{-}))}{N(K^{+}e^{+}e^{-})}$$
$$\cdot \frac{\varepsilon(K^{+}J/\psi(\mu^{+}\mu^{-}))}{\varepsilon(K^{+}\mu^{+}\mu^{-})} \cdot \frac{\varepsilon(K^{+}e^{+}e^{-})}{\varepsilon(K^{+}J/\psi(e^{+}e^{-}))}$$

New analysis of R_K and R_{K*0}

- Data: full Run1+2 sample
 - Reanalysis of $B^+ \to K^+ \ell \ell$
 - Update of $B^0 \to K^{*0} \ell \ell$ with Run2 (more than 5x more bb pairs)
- Two bins in the di-lepton mass
 - (1) low- q^2 : [0.1, 1.1] GeV²/C⁴

(2) central- q^2 : [1.1, 6.0] GeV²/c⁴

- Veto the q2 region close to the resonances (3)
 - Use $B \to K^{(*)}J/\psi$ and $B \to K^{(*)}\psi(2S)$ for

normalisation and cross-checks

_HCb-PAPER-2022-046 _HCb-PAPER-2022-045

Analysis strategy

- Reoptimised selection
 - Tighter PID and targeted partially reconstructed background selection
- Efficiency calculation using simulation
 - Extensive calibration using data-driven m
 - Cross-checks using $r_{J/\psi}$ and $R_{\psi(2S)}$
- Signal yield determination through a simultaneous fit to $m(K\ell\ell)$ and $m(K\pi)$
 - Constrain partially reconstructed background on $B^+ \to K^+ \ell \ell$ from $B^0 \to K^{*0} \ell \ell$ signal

$r_{J/\psi} = \frac{\mathcal{B}(B \to K \ J/\psi(\mu\mu))}{\mathcal{B}(B \to K \ J/\psi(ee))}$

hethods

$$R_{\psi(2S)} = \frac{\mathcal{B}(B \to K \ \psi(2S)(\mu\mu))}{\mathcal{B}(B \to K \ \psi(2S)(ee))} >$$

$$\pi \ell \ell) \qquad \qquad R_K = \frac{\frac{N}{\varepsilon} (B \to K \ \mu \mu)}{\frac{N}{\varepsilon} (B \to K \ ee)} \times r_{J/\psi}^{-1}$$

Efficiency calibration

- Use control channels in data in order to correct the simulation modelling of
 - B production kinematics
 - Detector response (tracking, PID, trigger, etc)
- Cross-checks to ensure correct efficiency estimation
 - Single ratios ($\Delta \sim 25\%$)
 - Double ratios ($\Delta \sim 5\%$)
- Ratios determined also as a function of kinematics

LHCb-PAPER-2022-046 _HCb-PAPER-2022-045

Heavy flavour 2023 - Quo Vadis?

MisID background

- PID criteria based on e/π separation log-likelihood (DLL) and neural-network based e ID (ProbNN) • Tightening PID selection induced a systematic shift in the result
- Solved when including various (previously underestimated) backgrounds
 - Fully reconstructed $B \to K^{(*)}hh'$ such as $B \to K^{(*)}KK$, $B \to K^{(*)}\pi\pi$, $B \to D(hh')\pi$ (triple misID)
 - > Partially reconstructed $B \to K^{(*)}\pi(\pi^0, \gamma)X$

R_K	central	$-q^2$
-------	---------	--------

DLL(e) > 7	$\stackrel{0.948}{\pm}$	$\overset{0.944}{\pm}$	$\overset{0.944}{\pm}$	$\stackrel{0.939}{\pm}$	$\stackrel{0.939}{\pm}$	$\overset{0.941}{\pm}$	$\overset{0.934}{\pm}$	$\stackrel{0.935}{\pm}$	$\substack{0.937\\\pm}$	$^{1.127}_{\pm}$	$^{1.119}_{\pm}$	$^{1.116}_{\pm}$	1.103 \pm	1.097 \pm	1.083 \pm	$\substack{1.097\\\pm}$	1.113 ±	$\overset{1.119}{\pm}$
() / .	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.052	0.100	0.099	0.099	0.098	0.097	0.095	0.099	0.101	0.103
DLL(e) > 5	$\stackrel{0.941}{\pm}$	$0.938 \\ \pm$	$\overset{0.942}{\pm}$	$\stackrel{0.933}{\pm}$	$\stackrel{0.939}{\pm}$	$\overset{0.951}{\pm}$	$\overset{0.946}{\pm}$	$\stackrel{0.953}{\pm}$	$\overset{0.949}{\pm}$	$^{1.021}_{\pm}$	$\overset{1.016}{\pm}$	$\overset{1.016}{\pm}$	$\substack{0.997\\\pm}$	$\overset{1.016}{\pm}$	$\overset{1.001}{\pm}$	$\overset{1.012}{\pm}$	1.035 \pm	$1.049 \pm$
() /	0.044	0.044	0.044	0.044	0.045	0.046	0.046	0.047	0.048	0.074	0.074	0.075	0.073	0.076	0.075	0.077	0.081	0.084
DLL(e) > 2	0.906 ±	0.902 \pm	0.907 \pm	0.895 \pm	0.904 ±	0.916 \pm	0.920 \pm	0.925 \pm	$0.919 \\ \pm$	0.965 \pm	0.990 \pm	0.986 \pm	$0.993 \\ \pm$	1.024 ± 0.075	1.006 ± 0.070	1.014 ± 0.075	1.038 ± 0.000	1.039 ± 0.001
	0.040	0.040	0.040	0.040	0.041	0.042	0.043	0.044	0.044	0.066	0.069	0.069	0.071	0.075	0.073	0.075	0.079	0.081
	> 0.20	> 0.25	> 0.30	> 0.35	> 0.40	> 0.45	> 0.50	> 0.55	> 0.60	> 0.20	> 0.25	> 0.30	> 0.35	> 0.40	> 0.45	> 0.50	> 0.55	> 0.60
ProbNN(e)								F	ProbNN	(e)								

_HCb-PAPER-2022-046 _HCb-PAPER-2022-045

R_{K^*}	$\operatorname{central}-q^2$
-----------	------------------------------

Modelling the misID background

- Pass&Fail method
 - Invert PID selection in data to obtain the spectrum of misID enriched
 - Subtract residual signal using simulation
 - Use calibration samples to fold in the efficiency of the baseline PID criteria as a function of the electron kinematics

Modelling the misID background

- Pass&Fail method
 - Invert PID selection in data to obtain the spectrum of misID enriched
- MeV/c^2 (33.33 Counts
- Subtract residual signal using simulation
- Use calibration samples to fold in the efficiency of the baseline PID criteria as a function of the electron kinematics

LHCb-PAPER-2022-046 LHCb-PAPER-2022-045

Modelled by empirical model including a narrow and broad peaking structures to describe fully and partially reconstructed misID backgrounds

Backup: comparison

Comparison to previous R_K measurement

Heavy flavour 2023 - Quo Vadis?

◆ Different PID cut used → Allowed σ_{stat} : ±0.033 • Mis-ID rate from $D^{*-} \to D^0(K\pi)\pi$

♦ With new(previous) analysis requirements

	Sample	$\pi \to e$	$K \to e$		
11+12)	Run 1	1.78 (1.70) %	0.69(1.24)%	R. Quad	lia
15+16)	${ m Run}2{ m p1}$	0.83(1.51)%	0.18(1.25)%	CFRN se	n
17+18)	${ m Run}2{ m p}2$	0.80(1.50)%	0.16(1.23)%	OLINIOC	211
sing	gle-misID	× 1 (Run1) × 2 (Run2)	× 2 (Run1) × 7 (Run2)		
dou	ble-misID	$\times 1^2$ (Run1) $\times 2^2$ (Run2)) × 2 ² (Run1)) × 7 ² (Run2)		
Shift d	lue to co	ntamination	n at looser work	ing A	
point : +0.064					
Shift due to not inclusion of background in					
mass f	it: + 0.0 3	38		arly	

LHC Seminar, CERN

54

Results for R_K & R_{K*0}

Heavy flavour 2023 - Quo Vadis?

$$\begin{split} \log -q^2 \begin{cases} R_K &= 0.994 \stackrel{+0.090}{_{-0.082}}(\text{stat}) \stackrel{+0.029}{_{-0.027}}(\text{syst}), \\ R_{K^*} &= 0.927 \stackrel{+0.093}{_{-0.087}}(\text{stat}) \stackrel{+0.036}{_{-0.035}}(\text{syst}), \\ \text{central-}q^2 \begin{cases} R_K &= 0.949 \stackrel{+0.042}{_{-0.041}}(\text{stat}) \stackrel{+0.022}{_{-0.022}}(\text{syst}), \\ R_{K^*} &= 1.027 \stackrel{+0.072}{_{-0.068}}(\text{stat}) \stackrel{+0.027}{_{-0.026}}(\text{syst}), \end{split}$$

 Most precise and accurate determination of LFU ratios in $b \rightarrow s\ell\ell$ decays

Compatible with the SM prediction

What else from Run1&2?

Many results still to come from Run1+2 data

- LFU test in different channels [$R_{K\pi}$, $R_{K\pi\pi}$, R_{φ} , R_A , R_{π} , ...]
- Additional bins in q^2 , $m(K\pi)$, ...
- Comparison of angular distributions between e and μ

[LHCb, <u>arXiv:</u>	1808.0886
R_X precision	$9{ m fb}^{-1}$
R_K	0.043
$R_{K^{*0}}$	0.052
R_{ϕ}	0.130
R_{pK}	0.105
R_π^-	0.302

Run1&2: High q^2

The high q2 region is experimentally more challenging due to interplay between different backgrounds

use q2 calculated without bremsstrahlung correction (q2nobrem), multivariate q2 selection, ...

Heavy flavour 2023 - Quo Vadis?

Run1&2: Angular LFU

• Difference in angular observables between muons and electrons (e.g. $Q_5 = P'_5(\mu) - P'_5(e)$)

- Complementary sensitivity to NP effects
- Very different experimental systematics
- At LHCb, challenges introduced by the worse electron resolution (backgrounds, q^2 migration, ...)

Heavy flavour 2023 - Quo Vadis?

P. Álvarez Cartelle (U. Cambridge)

Run1&2: Angular LFU

• Unbinned angular analysis to measure the difference in WC's directly:

$$\mathcal{A}_{\lambda}^{(\ell) L, R} = \mathcal{N}_{\lambda}^{(\ell)} \left\{ \left(C_{9}^{(\ell)} \mp C_{10}^{(\ell)} \right) \mathcal{F}_{\lambda}(q^{2}) + \frac{2m_{b}M_{B}}{q^{2}} \left[C_{7}^{(\ell)} \mathcal{F}_{\lambda}^{T}(q^{2}) - 16\pi^{2} \frac{M_{B}}{m_{b}} \mathcal{H}_{\lambda}(q^{2}) \right] \right\}$$

 $\Delta C_{9,10}$ insensitive to truncation order of non-local contributions Analysis ongoing in central-q2 (in parallel with individual μ/e unbinned analyses)

Heavy flavour 2023 - Quo Vadis?

Run 3 and beyond

• LHCb Upgrade I for Run3 and Run4 ($\mathscr{L} \sim$

- Large detector upgrade, trigger-less readout and full software trigger
- Goal is to keep the excellent performance of Run1&2 in a more challenging environment
- LHCb Upgrade II to fully profit from HL-LHC
 - Novel technologies and timing information to deal with the pile up in the HL-LHC

Run 3,4				$\mathbf{LHCb} \mathbf{Upgrade} \mathbf{I} \longrightarrow$					
	Run4			Run5		Run6			
- MS rades	→ £ _{int} ~ 50 fb ⁻¹	L	4	£ = 1-2 x 10 ³⁴ —	LS5	→L _{int} ~ 300 fb ⁻¹			
CbUp	b Upgrade I: incremental								

improvements/prototype detectors

$$\sim 2 \times 10^{33} \ s^{-1} cm^{-2}$$

$$C(\mathscr{L} \sim 2 \times 10^{34} \ s^{-1} cm^{-2})$$

LHCb Upgrade I

Vertexing New silicon pixel

Vertex Detector

Tracking New silicon upstream tracker

PID New photon detectors

New data centre and fully software trigger

Tracking New scintillating fibre tracking system

Electronics

New

Going Trigger-less & fully software

Remove limitations from the hardware trigger, to fully profit from the higher luminosity

Collect data at 5x the rate for di-muon channels and 10x the rate for hadronic channels

Beyond the Flavour Anomalies III

Electrons in Run3

- LHCb will be running at higher lumi \Rightarrow more pile-up (~5x more tracks)
 - New tracking & vertexing
 - ECAL remains unchanged (new electronics) and removal of PS and SPD detectors
 - Removal of the hardware trigger
- Larger occupancy & more material: more background in the calorimeter & larger energy loss
 - Momentum and mass resolution (Brem. recovery)
 - Electron ID is more challenging in this environment Significant work to improve electron & calorimeter reconstructions
- Software trigger: use higher level information to select electrons more efficiently
 - recover efficiency lost in the LO and the LO related systematic errors disappear (better kinematic overlap between μ and e)

P. Álvarez Cartelle (U. Cambridge)

LFU in Run 3 and beyond

• R_K and start to get systematically limited towards the end

- Other ratios achieving sensitive precision
- Ability to define smaller q^2 bins

Systematic associated with the determination of misID backgrounds:

- Uncertainty on the transfer function (calibration samples)
- Definition of control regions

Statistical component will be reduced with more data Detailed studies of misID backgrounds & $B \rightarrow Khh'$ Dalitz structures will help keeping these under control

R_X precision	$9{ m fb}^{-1}$	$23{ m fb}^{-1}$	$50{\rm fb}^{-1}$
R_K	0.043	0.025	0.017
$R_{K^{*0}}$	0.052	0.031	0.020
R_{ϕ}	0.130	0.076	0.050
R_{pK}	0.105	0.061	0.041
R_{π}	0.302	0.176	0.117

P. Álvarez Cartelle (U. Cambridge)

[LHCb, <u>arXiv:1808.08865</u>]

LFU in Run 3 and beyond

 Comparison of the angular distributions between electrons and muons will give the ultimate precision in LFU observables, allowing to distinguish between NP scenarios

Shaded areas: Upgrade II

 $\mu vs \tau?$

- Attempts to explain LFU violating effects in R(D)-R(D*) tend to enhance $b \rightarrow s \tau \tau$ couplings
- As a bonus, one obtains higher order corrections to $b \rightarrow s\ell\ell$, causing a LFU shift in C_9
 - In many models additional couplings to lighter leptons can be included to take care of e/µ LFnU

		SM p
$B_s \to \tau \tau$		(7.73 ± 0.49)
$B\to K\tau\tau$	$[15, 22] \mathrm{GeV}^2/c^2$	$(1.20 \pm 0.12$
$B \to K^* \tau \tau$	$[15, 19] \mathrm{GeV}^2/c^2$	$(0.98 \pm 0.10$
$B_s \to \phi \tau \tau$	$[15, 18.8] { m GeV}^2/c^2$	$(0.86 \pm 0.06$

Bobeth et al, PRL 112 (2014) 101801, Capdevila et al, PRL120 (2018) 181802

Heavy flavour 2023 - Quo Vadis?

31

P. Álvarez Cartelle (U. Cambridge)

• At least two undetected neutrinos in the final state

- Mass resolution, backgrounds $(B \rightarrow DDX)$
- challenging for both Belle II and LHCb

A lot of work ongoing on the experiments to improve these limits

- Additional modes (e.g. $B_s \to \phi \tau \tau, \Lambda_b \to p K \tau \tau$)
- Favourable kinematic regions
- Both hadronic and leptonic τ decays
- $\tau \tau \rightarrow \mu \mu$ re-scattering in $B \rightarrow K \mu \mu$

[50/fb]	LHCb $[300/fb]$	Belle II $[50/ab]$	[J. Cerasoli, PhD ⁻
$\times 10^{-3}$	5×10^{-5}	$8 \times 10^{-3} (*)$ 1×10^{-5}	[LHCb, <u>arXiv:1808.(</u>
$\times 10^{-4}$	5×10^{-7}	1×10 1×10^{-5}	[<u>Belle II, PTEP(2019)12</u>
			(*) Assumes 5/ab at the
			,

P. Álvarez Cartelle (U. Cambridge)

Summary

- Latest measurement of R_{K} and R_{K^*0} in agreement with the SM prediction
 - Most accurate description of the misID background in the electron modes
- Many LFU measurements still to come from LHCb Run1&2 samples
 - Additional modes, high q2 and first angular μ/e comparisons
- Ongoing Run3 comes with new challenges but we are working hard to maintain performance unchanged
- Increase in data rate opens new possibilities for precision LFU measurements
 - $b \to d\ell\ell$
 - Differential measurements with finer binning
- Belle II will be complementary in the study of $b \rightarrow s\ell\ell$ transitions
 - Crucial for measurements of $b \rightarrow s \tau \tau$ and invisible final states

Backup

 $\mathcal{T}\mathcal{T}$

• Only limit coming from LHCb Run1, using hadronic τ decays

- $Br(B_s \to \tau \tau) < 6.8 \times 10^{-3} \ @95\% \ CL$
- $Br(B_d \to \tau \tau) < 2.1 \times 10^{-3} \ @95\% \ CL$
- Analysis of the full Run2 data ongoing (at least x2)
- Expected to reach 10⁻³ at the end of Run4 [50/fb]
- And 5x10⁻⁵ by the end of Upgrade II [300/fb]
- Tau decay model will become limiting
- Belle II, assuming will collect 5/ab at the $\Upsilon(5S)$, would reach 8x10⁻³

```
Belle II, PTEP(2019)123C01
```


 $B \rightarrow K^{(*)} \tau \tau$

 Only limit coming from BaBar, using leptonic τ decays (μμ, ee, eμ)

 $Br(B^+ \to K^+ \tau \tau) < 2.25 \times 10^{-3} \quad @90\% \text{ CL}$

- Fully reconstructed Btag, gives access to missing momentum from Bsig
- At Belle II, soon reach 10⁻⁴ [1/ab] and 10⁻⁵ by the end of data taking [50/ab] Belle II, PTEP(2019)123C01
- At LHCb, $B \rightarrow h^+ h^- \tau \tau$ has better prospects, e.g. $B \rightarrow K^{*0} \tau \tau$ expected to reach 10⁻⁴ [Run1+2]
 - Also $B_s \to \phi \tau \tau$ or $\Lambda_b \to p K \tau \tau$ being pursued both in the hadronic and leptonic modes

Peak Luminosity [x10³⁵cm₋₂s⁻¹]

P. Álvarez Cartelle (U. Cambridge)

 $B \rightarrow K^{(*)} \tau \tau$

 Only limit coming from BaBar, using leptonic τ decays (μμ, ee, eμ)

 $Br(B^+ \to K^+ \tau \tau) < 2.25 \times 10^{-3} \quad @90\% \text{ CL}$

- Fully reconstructed Btag, gives access to missing momentum from Bsig
- At Belle II, soon reach 10⁻⁴ [1/ab] and 10⁻⁵ by the end of data taking [50/ab] Belle II, PTEP(2019)123C01
- At LHCb, $B \rightarrow h^+ h^- \tau \tau$ has better prospects, e.g. $B \rightarrow K^{*0} \tau \tau$ expected to reach 10⁻⁴ [Run1+2]
 - Also $B_s \to \phi \tau \tau$ or $\Lambda_h \to p K \tau \tau$ being pursued both in the hadronic and leptonic modes

 $B \to K^{(*)} \tau \tau \to K^{(*)} \mu \mu$ re-scattering

- Indirect limit to $B \to K \tau \tau$ from the precise study of
 - the $B \rightarrow K \mu \mu$ di- μ mass spectrum
 - cusp in-between the J/ ψ and ψ (2S) resonances (2xm_{τ})
 - Istortion in the shape of the spectrum before the resonances
- Requires to experimentally distinguish the $b \rightarrow s \tau \tau$ amplitude from long distance hadronic contributions also with q2-dependence

LFV decays: $b \rightarrow s \tau \mu$

• Without NC LFU anomalies, enhancement in $b \rightarrow s \tau \mu$ not as favoured?

- Tiny in the SM (neutrino oscillation), null test of SM
- Experimentally look for $B_s \rightarrow \tau \mu$, $B \rightarrow K \tau \mu$, etc

• With only one τ things get a bit easier:

- Reconstruct full kinematics for the hadronic decay (up to ambiguities)
- Use additional constraints from beam energy (B-fac⁻

tories) or
$$B^*_{2s} o BK$$
 (LHCb)

New limit on $B \rightarrow K^* \tau \mu$

Using full Run1+Run2 dataset & hadronic τ's

- Separate $\tau^+\mu^-$ from $\tau^-\mu^+$, due to different mix of backgrounds
- Fit the corrected mass: $m_{\rm corr} = \sqrt{p_{\perp}^2 + m_{K^*\tau\mu}^2 + p_{\perp}}$

• Best experimental limit in $b \rightarrow s \tau \mu$

 $Br(B^0 \to K^{*0}\tau^+\mu^-) < 1.0 \times 10^{-5} \quad @90\% \text{ CL}$ $Br(B^0 \to K^{*0} \tau^- \mu^+) < 8.2 \times 10^{-6} \quad @90\% \text{ CL}$

- For similar performances, can expect limits around 10⁻⁷ for the end of LHCb Upgrade II
- At Belle II, expect limits around 10⁻⁶ with 50/ab [naive extrapolation of BaBar result]

