Plan B: New Z' models for $b \to s \ell^+ \ell^-$ anomalies

Ben Allanach (Cambridge) Collaborators: Anna Mullin

by

 $b \to s \ell^+ \ell^-$ anomalies

Interpolating in Z'/di-electron couplings

Fits: BCA, Mullin, 2306.08669

 $b \rightarrow s \mu^+ \mu^-$ anomalies

 $B^0 \to K^{*0} \mu^+ \mu^-$ angular distributions, $BR{\rm s}$ and

$$BR(B_s \to \phi \mu^+ \mu^-)$$

... prefer new physics: $Z' - \mu^+ \mu^-$ and Z' - bs. But what about coupling to di-electrons?

LHCb 2212.09152

$$R_X(q^2) = \frac{BR(B \to X\mu^+\mu^-)}{BR(B \to Xe^+e^-)}(q^2)$$

Neutral Current Fits

Alguero et al, 2304.07330; Altmannshofer, Stangl, flavio 2212.10497 Ciuchini et al, HEPfit 2212.10516; Hurth et al, superIso 23??.????

$$\mathcal{L} = N[C_9(\bar{b}_L\gamma^\mu s_L)(\bar{\mu}\gamma_\mu\mu) + C_{10}(\bar{b}_L\gamma^\mu s_L)(\bar{\mu}\gamma^5\gamma_\mu\mu)] + H.c.$$

Plot from B Capdevila-Soler Beyond Flavour Anomalies workshop

${\rm Simple}\,\, Z'\,\, {\rm Model}$

SM-singlet scalar 'flavon' θ

Additional $U(1)_X$ gauge symmetry broken by $\langle\theta\rangle\sim {\rm TeV} \Rightarrow M_{Z'}\sim {\rm TeV}$

 $SM+3\nu_R$ fermion content

Zero charges for first two generations of quark Postdicts heavy third family quarks¹

¹Bonilla et al, 1705.00915; Alonso et al 1705.03858, BCA 2009.02197 (simplified EFT)

Anomaly cancellation

Need to pick X charges for fermions consistent with QFT anomaly cancellation.

$$X = 3B_3 - (X_e L_e + X_\mu L_\mu + [3 - X_e - X_\mu] L_ au)$$
works (proof in 2306.08669).

Flavour problem

Postdicts small CKM angles

$$\mathcal{L}_{X\psi} = g_X \left(\overline{\mathbf{u}_{\mathbf{L}}} \Lambda_{\xi}^{(u_L)} \mathbf{Z}' \mathbf{u}_{\mathbf{L}} + \overline{\mathbf{u}_{\mathbf{R}}} \Lambda_{\xi}^{(u_R)} \mathbf{Z}' \mathbf{u}_{\mathbf{R}} \right. \\ \left. + \overline{\mathbf{d}_{\mathbf{L}}} \Lambda_{\xi}^{(d_L)} \mathbf{Z}' \mathbf{d}_{\mathbf{L}} + \overline{\mathbf{d}_{\mathbf{R}}} \Lambda_{\xi}^{(d_R)} \mathbf{Z}' \mathbf{d}_{\mathbf{R}} \right. \\ \left. - \overline{\mathbf{e}_{\mathbf{L}}} \Lambda_{\Xi}^{(e_L)} \mathbf{Z}' \mathbf{e}_{\mathbf{L}} - \overline{\mathbf{e}_{\mathbf{R}}} \Lambda_{\Xi}^{(e_R)} \mathbf{Z}' \mathbf{e}_{\mathbf{R}} \right. \\ \left. - \overline{\boldsymbol{\nu}_{L}} \Lambda_{\Xi}^{(\nu_L)} \mathbf{Z}' \boldsymbol{\nu}_{L} - \overline{\boldsymbol{\nu}_{R}} \Lambda_{\Xi}^{(\nu_R)} \mathbf{Z}' \boldsymbol{\nu}_{R} \right),$$

$$\Lambda_{\xi}^{(I)} \equiv V_{I\Xi}^{\dagger\xi} V_{I}, \ \xi = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \\ \Xi = \begin{pmatrix} X_{e} & 0 & 0 \\ 0 & X_{\mu} & 0 \\ 0 & 0 & X_{\tau} \end{pmatrix}$$

Z' couplings, $I \in \{u_L, d_L, e_L, \nu_L, u_R, d_R, e_R\}$

A simple limiting case

$$V_{u_R} = V_{d_R} = V_{e_L} = V_{e_R} = 1$$

$$V_{d_L} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{sb} & -\sin \theta_{sb} \\ 0 & \sin \theta_{sb} & \cos \theta_{sb} \end{pmatrix}$$

 $\Rightarrow V_{u_L} = V_{d_L} V_{CKM}^{\dagger}$ and $V_{\nu_L} = V_{e_L} U_{PMNS}^{\dagger}$.

Important Z' Couplings

$$g_{Z'}\left[\left(\overline{d_L}\ \overline{s_L}\ \overline{b_L}\right) \begin{pmatrix} 0 & 0 & 0 \\ 0 & \sin^2\theta_{sb} & \frac{1}{2}\sin 2\theta_{sb} \\ 0 & \frac{1}{2}\sin 2\theta_{sb} & \cos^2\theta_{sb} \end{pmatrix} Z' \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix} \right. \\ \left. -\left(\overline{e}\ \overline{\mu}\ \overline{\tau}\right) \begin{pmatrix} X_e & 0 & 0 \\ 0 & X_\mu & 0 \\ 0 & 0 & (3 - X_e - X_\mu) \end{pmatrix} Z' \begin{pmatrix} e \\ \mu \\ \tau \end{pmatrix} \right] \\ \left. b_L \\ X'_{\mu} \\ S_L \\ \mu^- \\ \right.$$
 LFU Violating, $C_9 \neq 0$

12

$B_s - \bar{B}_s$ Mixing

Measurement agrees with SM.

SMEFT WCs/ $(g_{Z'}^2/M_{Z'}^2)$

WC	value	WC	value
C_{ll}^{iiii}	$-\frac{1}{2}L_i^2$	$C_{ll}^{iijj} \ (i \neq j)$	$-L_iL_j$
$(C_{lq}^{(1)})^{iijk}$	$L_i(\Lambda_{\Xi}^{(d_L)})_{jk}$		
$C_{ee}^{iijj}(i \neq j)$	$-L_iL_j$	C_{uu}^{3333}	$-\frac{1}{2}$
C_{dd}^{3333}	$-\frac{1}{2}$	C_{ee}^{iiii}	$-\frac{1}{2}L_i^2$
C_{eu}^{ii33}	L_i	C_{ed}^{ii33}	L_i
$C_{ud}^{(1)3333}$	-1	$C_{le_{ijj}}^{iijj}$	$-L_iL_j$
C_{qe}^{ijkk}	$L_k(\Lambda_{\Xi})_{ij}$	$C_{qu}^{(1)ij33}$	$-(\Lambda_{\Xi})_{ij}$
$C_{qd}^{(1)ij33}$	$-(\Lambda_{\Xi})_{ij}$	$C_{qq}^{(1)ijkl}$	$(\Lambda_{\Xi})_{ij}(\Lambda_{\Xi})_{kl} rac{\delta_{ik}\delta_{jl}-2}{2}$
C_{lu}^{ii33}	L_i	C_{ld}^{ii33}	L_i

wilson | flavio | smelli > output

LEP constraints

Put into flavio (Falkowski, Mimouni 1511.07434) Fit θ_{sb} and $g_{Z'}/M_{Z'}$

 $3B_3 - L$ model

 $3B_3 - L_e - 2L_\mu$ model

	$\chi^2 - \chi^2_{SM}$	p-value	measurement	pull
LFU	-0.2	.81	$R_{K^*}(0.045, 1.1)$	-0.1
LEP	-0.4	.58	$R_{K^*}(1.1, 6)$	-0.1
quarks	-14.6	.10	$R_K(0.045, 1.1)$	-0.3
global	-15.3	.27	$R_{K}(1.1, 6)$	-1.1

 $g_{Z'}=0.2$, $\theta_{sb}=-0.03$ best-fit

Flavonstrahlung Models of Z' ilk possess $\mathcal{L} = \lambda H H^{\dagger} \theta \theta^{\dagger} \Rightarrow$ a *flavonstrahlung* signature:

BCA, 2009.02197; BCA, Loisa, 2212.07440

Epilogue

Remarkable that TeV-scale flavour symmetries are still allowed

Backup

$b \rightarrow s l^+ l^-$ in Standard Model

$BR(B \to K\mu^+\mu^-) = BR(B \to Ke^+e^-)$

 $BR \sim \mathcal{O}(10^{-7})$: loop+EW+CKM

LHCb $B^0 \to K^{0*} e^+ e^-$ Event³

$$B^0 \to K^{*0} (\to K^+ \pi^-) \mu^+ \mu^-$$

Decay fully described by three helicity angles $\vec{\Omega} = (\theta_{\ell}, \theta_K, \phi)$ and $q^2 = m_{\mu\mu}^2 \frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma + \bar{\Gamma})}{\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \left[\frac{3}{4}(1 - F_{\mathrm{L}})\sin^2\theta_K + F_{\mathrm{L}}\cos^2\theta_K + \frac{1}{4}(1 - F_{\mathrm{L}})\sin^2\theta_K\cos 2\theta_\ell - F_{\mathrm{L}}\cos^2\theta_K\cos 2\theta_\ell + S_3\sin^2\theta_K\sin^2\theta_\ell\cos 2\phi + S_4\sin 2\theta_K\sin 2\theta_\ell\cos\phi + S_5\sin 2\theta_K\sin\theta_\ell\cos\phi + \frac{4}{3}A_{\mathrm{FB}}\sin^2\theta_K\cos\theta_\ell + S_7\sin 2\theta_K\sin\theta_\ell\sin\phi + \frac{4}{3}A_{\mathrm{FB}}\sin^2\theta_K\sin 2\theta_\ell\sin\phi + S_9\sin^2\theta_K\sin^2\theta_\ell\sin^2\theta_\ell\sin2\phi\right]$

 P_5'

⁵LHCb, 2003.04831

 $B_s \to \phi \mu^+ \mu^-$: $\phi = (s\bar{s})$

Other LFU

Trident Neutrino Process

FIG. 10. Neutrino trident process that leads to constraints on the Z^{μ} coupling strength to neutrinos-muons, namely $M_{Z'}/g_{v\mu} \gtrsim 750$ GeV.

t-channel

Z'

 ϑ

$$R_{D^{(*)}} = BR(B^- \to D^{(*)}\tau\nu)/BR(B^- \to D^{(*)}\mu\nu)^6$$

Make an effective theory with heavy BSM particle:

$$\mathcal{L}_{WET} = -\frac{2\lambda_1\lambda_2}{M^2} \left(\bar{c}\gamma^{\mu}P_L\nu\right) \left(\bar{\tau}\gamma_{\mu}P_Lb\right) + H.c.$$

Fit to data tells us

$$M = 3.4 \text{ TeV} \times \sqrt{\lambda_1 \lambda_2}$$

$H\vartheta$ potential

 $V = -\mu^2 H^{\dagger} H + \lambda_H (H^{\dagger} H)^2 - \mu_{\theta}^2 \theta^* \theta +$ $\lambda_{\theta}(\theta^*\theta)^2 + \lambda_{\theta H}\theta^*\theta H^{\dagger}H$ $= -\frac{1}{2} \left(h' \,\vartheta' \right) M^2 \left(\frac{h'}{\vartheta'} \right) + \dots$ $M^{2} = \begin{pmatrix} 2\lambda_{H}v_{H}^{2} & \lambda_{\theta H}v_{H}v_{\theta} \\ \lambda_{\theta H}v_{H}v_{\theta} & 2\lambda_{\theta}v_{\theta}^{2} \end{pmatrix}$

$H\vartheta$ mixing

$$\begin{pmatrix} h \\ \vartheta \end{pmatrix} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} h' \\ \vartheta' \end{pmatrix}$$

$$\sin 2\phi = \frac{2\lambda_{\theta H} v_h v_{\theta}}{m_{\vartheta}^2 - m_h^2}.$$
(1)

Three parameters: $v_{\theta} = M_{Z'}/g_{Z'}$, m_{ϑ} and ϕ .

Higgs Signal Strength

ϑ **BRs**

2 resonances

(HL-)LHC searches

FCC Flavonstrahlung

