Semileptonic $b \rightarrow c$ Form Factors

Danny van Dyk
Heavy Flavour 2023 @ Ardbeg Destillery, Jun 21st 2023

Institute for Particle Physics Phenomenology, Durham

Test of Lepton-Flavour Universality (LFU)

- parametrize mismatch between free-quark processes and hadronic processes
- scalar-valued functions of a single variable: momentum transfer $q^{2}=m_{\ell \bar{\nu}}^{2}$
- parametrize mismatch between free-quark processes and hadronic processes
- scalar-valued functions of a single variable: momentum transfer $q^{2}=m_{\ell \bar{\nu}}^{2}$
- for extraction of $V_{c b}$
- $\bar{B} \rightarrow D$: 1 form factor; $1 \times$ vector current
- $\bar{B} \rightarrow D^{*}: 3$ form factors; $1 \times$ vector current and $2 x$ axial current
available from EXP+TH
available from EXP+TH
- parametrize mismatch between free-quark processes and hadronic processes
- scalar-valued functions of a single variable: momentum transfer $q^{2}=m_{\ell \bar{\nu}}^{2}$
- for extraction of $V_{c b}$
- $\bar{B} \rightarrow D$: 1 form factor; $1 \times$ vector current
- $\bar{B} \rightarrow D^{*}: 3$ form factors; $1 \times$ vector current and $2 x$ axial current
available from EXP + TH available from EXP+TH
- for SM prediction of $R_{D^{(*)}}$
- $\bar{B} \rightarrow D$: +1 form factor; scalar current
- $\bar{B} \rightarrow D^{*}:+1$ form factor; pseudoscalar current
available from TH only
available from TH only
- parametrize mismatch between free-quark processes and hadronic processes
- scalar-valued functions of a single variable: momentum transfer $q^{2}=m_{\ell \bar{\nu}}^{2}$
- for extraction of $V_{c b}$
- $\bar{B} \rightarrow D$: 1 form factor; $1 \times$ vector current
- $\bar{B} \rightarrow D^{*}: 3$ form factors; $1 \times$ vector current and $2 x$ axial current
available from EXP+TH available from EXP+TH
- for SM prediction of $R_{D^{(*)}}$
- $\bar{B} \rightarrow D:+1$ form factor; scalar current
- $\bar{B} \rightarrow D^{*}:+1$ form factor; pseudoscalar current
available from TH only available from TH only
- for BSM interpretation in the Weak Effective Theory up to mass dimension six
- $\bar{B} \rightarrow D:+1$ form factors; tensor currents
- $\bar{B} \rightarrow D^{*}:+3$ form factors; tensor currents
available from TH only available from TH only
- crossing symmetry relates hadronic form factors for $\bar{B} \rightarrow D^{(*)} \ell^{-} \bar{\nu}$ with form factors for $\ell^{-} \bar{\nu} \rightarrow \overline{B D}^{(*)}$ production
- integrated cross section (χ) can be computed in a local OPE
- known to high precision: NNLO in α_{s}, power corrections small
- inspires a parametrization based on a conformal mapping of the first Riemann sheet of the form factor to the z unit disk
- reproduces known analytical properties of the form factors
- sets an absolute scale for any of the form factors, with bounded coefficients

$$
\begin{aligned}
& \qquad f=\frac{1}{\sqrt{\chi}} \times\left[\sum_{k} a_{k}^{f} z^{k}\right] \times[\text { known things }] \\
& \text { dispersive bound }: \quad \sum\left|a_{k}^{f}\right|^{2} \leq 1
\end{aligned}
$$

- known poles are taken care of by so-called Blaschke factors

- in the semileptonic phase space $-|z|<0.07$
- heavy-quark expansion very effective if both quark flavours $b \& c$ are heavy \quad [ssur.Wise '89]
- simultaneous expansion in α_{s} up to NLO and $\Lambda_{\text {had }} / m_{b, c}$ up to 2 nd power
[Falk,Neubert hep-ph/9209268 \& hep-ph/9209269]
- yields parametric relations between form factors across both different currents and processes, as long as both initial and final state are elements of the same spin symmetry representation
- relates BSM-only (tensor) FFs to SM FFs
- challenges available theory inputs in a global fit
heavy-quark expansion of any of the $10 \bar{B} \rightarrow D^{(*)}$ form factors:

$$
f=\left(A^{f}+\frac{\alpha_{s}}{\pi} B^{f}\right) \xi+\sum_{i=1}^{6}\left[\frac{\Lambda}{2 m_{b}} C_{b, i}^{f} L_{i}+\frac{\Lambda}{2 m_{c}} C_{c, i}^{f} L_{i}\right]+\frac{\Lambda^{2}}{4 m_{c}^{2}} D^{f} \ell_{i}
$$

+ higher order terms
all 10 form factors connected by heavy-quark spin symmetry
- coefficients $A^{f}\left(q^{2}\right)$ to $D^{f}\left(q^{2}\right)$ are known to $\mathcal{O}\left(\alpha_{s}(\mu)\right)$
- non-perturbative "Isgur-Wise" functions ξ, L_{1} to L_{6}, and ℓ_{1} to ℓ_{6}
- equations of motion: only 10 independent functions
- require parametrization (typical \& adhoc: expand in z)
- power counting

$$
\begin{array}{ll}
\varepsilon^{1} & \frac{1}{m_{c}} \\
\varepsilon^{2} & \frac{1}{m_{b}}, \alpha_{s}, \frac{1}{m_{c}^{2}} \\
\varepsilon^{3} & \frac{\alpha_{s}}{m_{c}}, \frac{1}{m_{b} m_{c}}, \ldots
\end{array}
$$

- downside: no manifest dispersive bound
- express BGL coefficients a_{k}^{f} in terms of HQE parameters
- commonly discussed CLN param is: HQE to $\mathcal{O}(1 / m)+$ dispersive bound + simplifying assumptions
- upside: combination of dispersive bounds \& HQE is more constraining than dispersive bounds in isolation
- HQE relates $\bar{B} \rightarrow D^{(*)}$ FFs to $\bar{B}^{*} \rightarrow D^{(*)}$ FFs, which are currently unavailable from (other) theory methods
- strengthens dispersive bound by further constraining allowed parameter space
2019
- precise lattice QCD results for $\bar{B}_{(s)} \rightarrow D_{(s)}$ form factors
- several synthetic data points for vector \& scalar FFs
- covering substantial parts of phase space with large q^{2}
- first lattice QCD results for $\bar{B}_{(s)} \rightarrow D_{(s)}^{*}$ form factors
- one single data point for axial FF
- clear need for $\mathcal{O}\left(1 / m_{c}^{2}\right)$ [Jungs.Straub 2018]
- QCD light-cone sum rule results
- several synthetic data points for the full basis of form factors
- covering $q^{2} \leq 5 \mathrm{GeV}^{2}$ only
- nominal model is $3 / 2 / 1$:

$$
\text { LP up to } z^{3}
$$

NLP up to z^{2}
NNLP up to z^{1}

- good fit: $\chi^{2} /$ d.o.f $=10 / 51$
- benefitting from large amount of information in $\bar{B} \rightarrow D$ FFs, transfered to $\bar{B} \rightarrow D^{*} \mathrm{FFs}$

- nominal model is $3 / 2 / 1$:

$$
\text { LP up to } z^{3}
$$

NLP up to z^{2}
NNLP up to z^{1}

- good fit: $\chi^{2} /$ d.o.f $=10 / 51$
- benefitting from large amount of information in $\bar{B} \rightarrow D$ FFs, transfered to $\bar{B} \rightarrow D^{*} \mathrm{FFs}$

- nominal model is $3 / 2 / 1$:

$$
\text { LP up to } z^{3}
$$

NLP up to z^{2}
NNLP up to z^{1}

- good fit: $\chi^{2} /$ d.o.f $=10 / 51$
- benefitting from large amount of information in $\bar{B} \rightarrow D$ FFs, transfered to $\bar{B} \rightarrow D^{*} \mathrm{FFs}$

- nominal model is $3 / 2 / 1$:

LP up to z^{3}
NLP up to z^{2}
NNLP up to z^{1}

- good fit: $\chi^{2} /$ d.o.f $=10 / 51$
- benefitting from large amount of information in $\bar{B} \rightarrow D$ FFs, transfered to $\bar{B} \rightarrow D^{*} \mathrm{FFs}$

- compatible with Belle experimental data
2023
in $b \rightarrow c$ FFs:
- first lattice QCD results for $\bar{B} \rightarrow D^{*}$ form factors beyond $q^{2}=q_{\text {max }}^{2}$
- several synthetic data points for vector $+2 x$ axial + pseudoscalar FFs
- no updated HQE fit yet, due to issues in BGL fits already
in FF parameters in general:
- BGL-like parametrization applicable with accurate dispersive bound for higher pair production thresholds
- applied to $b \rightarrow s$ FFs $\left(\Lambda_{b} \rightarrow \Lambda ; B \rightarrow K^{(*)}+B \rightarrow \phi\right)$ and $b \rightarrow u$ FFs $\left(\overline{B_{s}} \rightarrow K\right)$
- ratios of FFs: R_{0}, R_{1}, R_{2}
- can be determined from
- BGL fits to
- FNAL/MILC 2021
- HPQCD 2023
- JLQCD 2023
- 2019 HQE postdiction
- Belle data

- ratios of FFs: R_{0}, R_{1}, R_{2}
- can be determined from
- BGL fits to
- FNAL/MILC 2021
- HPQCD 2023
- JLQCD 2023
- 2019 HQE postdiction
- Belle data

$\bar{B}_{(s)} \rightarrow D_{(s)}:$
- $t_{+}=\left(M_{B_{c}}+M_{\pi}\right)^{2}$
- $t_{\mathrm{th}}=\left(M_{B_{(s)}}+M_{D_{(s)}}\right)^{2}$

required changes
- $z^{k} \longrightarrow p_{k}(z)$: orthonormal polynomials w.r.t. scalar product on an arc of the unit circle

Quo Vadis?

- dispersively bounded \& HQE-based parametrization are both important tools in the FF basis
- HQE-based parametrization provides crucial cross check of theory inputs 2019 excellent agreement, good fit
2023 new lattice QCD inputs for $\bar{B} \rightarrow D^{*}$ at odds
- with each other
- with $\bar{B} \rightarrow D$
- with Belle data
- update of global HQE fit desirable but currently not feasible until issues understood
- dispersively bounded parametrizations have seen improvements
- no application to $\bar{B} \rightarrow D^{(*)}$ yet
- not shown today: splitting of dispersive bounds by (virtual W) polarization

